Skip to main content

Advertisement

Log in

DNMT3AR882H accelerates angioimmunoblastic T-cell lymphoma in mice

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

DNA methylation-related genes, including TET2, IDH2, and DNMT3A are highly frequently mutated in angioimmunoblastic T-cell lymphoma (AITL), an aggressive malignancy of T follicular helper (Tfh) cells associated with aberrant immune features. It has been shown that TET2 loss cooperates with RHOAG17V to promote AITL in mice but the functional role of DNMT3A mutations in AITL remains unclear. Here, we report that DNMT3AR882H, the most common mutation of DNMT3A in AITL, accelerates the development of Tet2−/−; RHOAG17V AITL in mice, indicated by the expansion of malignant Tfh cells and aberrant B cells, skin rash, and significantly shortened disease-free survival. To understand the underlying cellular and molecular mechanisms, we performed single-cell transcriptome analyses of lymph nodes of mice transplanted with Tet2−/−, Tet2−/−; RHOAG17V or DNMT3AR882H; Tet2−/−; RHOAG17V hematopoietic stem and progenitor cells. These single-cell landscapes reveal that DNMT3A mutation further activates Tfh cells and leads to rapid and terminal differentiation of B cells, probably through enhancing the interacting PD1/PD-L1, ICOS/ICOSL, CD28/CD86, and ICAM1/ITGAL pairs. Our study establishes the functional roles of DNMT3A mutation in AITL and sheds light on the molecular mechanisms of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: DNMT3A alterations frequently happen in human AITL.
Fig. 2: DNMT3AR882H accelerates AITL formation in mice.
Fig. 3: DNMT3AR882H promotes the pathologic features of AITL.
Fig. 4: The single-cell transcriptome analyses of mouse AITL.
Fig. 5: DNMT3A R882H promotes the activation of Tfh cells.
Fig. 6: Enhanced B cell differentiation and maturation in AITL mice with DNMT3A mutation.

Similar content being viewed by others

Data availability

Single-cell RNA-seq data were deposited in the Gene Expression Omnibus database repository under accession number 142645. The private code of GSE142645 is mfuvgkuerburdqr.

Code availability

The analysis code can be found on GitHub (https://github.com/pangxueyu233/DNMT3AR882H-accelerates-angioimmunoblastic-T-cell-lymphoma).

References

  1. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol: Off J Am Soc Clin Oncol. 2008;26:4124–30. https://doi.org/10.1200/jco.2008.16.4558.

    Article  Google Scholar 

  2. Mourad N, Mounier N, Brière J, Raffoux E, Delmer A, Feller A, et al. Clinical, biologic, and pathologic features in 157 patients with angioimmunoblastic T-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte (GELA) trials. Blood. 2008;111:4463–70. https://doi.org/10.1182/blood-2007-08-105759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Federico M, Rudiger T, Bellei M, Nathwani BN, Luminari S, Coiffier B, et al. Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol: Off J Am Soc Clin Oncol. 2013;31:240–6. https://doi.org/10.1200/jco.2011.37.3647.

    Article  CAS  Google Scholar 

  4. Attygalle AD, Kyriakou C, Dupuis J, Grogg KL, Diss TC, Wotherspoon AC, et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol. 2007;31:1077–88. https://doi.org/10.1097/PAS.0b013e31802d68e9.

    Article  PubMed  Google Scholar 

  5. de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109:4952–63. https://doi.org/10.1182/blood-2006-10-055145.

    Article  CAS  PubMed  Google Scholar 

  6. Piccaluga PP, Agostinelli C, Califano A, Carbone A, Fantoni L, Ferrari S, et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007;67:10703–10. https://doi.org/10.1158/0008-5472.Can-07-1708.

    Article  CAS  PubMed  Google Scholar 

  7. Cortes JR, Ambesi-Impiombato A, Couronné L, Quinn SA, Kim CS, da Silva Almeida AC, et al. RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell. 2018;33:259–.e257. https://doi.org/10.1016/j.ccell.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. Leukemia. 2020;34:2592–606. https://doi.org/10.1038/s41375-020-0990-y.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mondragón L, Mhaidly R, De Donatis GM, Tosolini M, Dao P, Martin AR, et al. GAPDH overexpression in the T cell lineage promotes angioimmunoblastic T cell lymphoma through an NF-κB-dependent mechanism. Cancer Cell. 2019;36:268–.e210. https://doi.org/10.1016/j.ccell.2019.07.008.

    Article  CAS  PubMed  Google Scholar 

  10. Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 controls follicular T helper cell positioning and function. Immunity. 2018;49:264–.e264. https://doi.org/10.1016/j.immuni.2018.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Odejide O, Weigert O, Lane AA, Toscano D, Lunning MA, Kopp N, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123:1293–6. https://doi.org/10.1182/blood-2013-10-531509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–5. https://doi.org/10.1038/ng.2872.

    Article  CAS  PubMed  Google Scholar 

  13. Palomero T, Couronné L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46:166–70. https://doi.org/10.1038/ng.2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. FlowJo™ Software. Version 10.3. Ashland, OR: Becton, Dickinson and Company. 2019.

  15. Ng SY, Brown L, Stevenson K, deSouza T, Aster JC, Louissaint A Jr., et al. RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in mice. Blood. 2018;132:935–47. https://doi.org/10.1182/blood-2017-11-818617.

    Article  CAS  PubMed  Google Scholar 

  16. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N. Engl J Med. 2010;363:2424–33. https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah MY, Licht JD. DNMT3A mutations in acute myeloid leukemia. Nat Genet. 2011;43:289–90. https://doi.org/10.1038/ng0411-289.

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, McKeithan TW, Gong Q, Zhang W, Bouska A, Rosenwald A, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood. 2015;126:1741–52. https://doi.org/10.1182/blood-2015-05-644591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yao WQ, Wu F, Zhang W, Chuang SS, Thompson JS, Chen Z, et al. Angioimmunoblastic T-cell lymphoma contains multiple clonal T-cell populations derived from a common TET2 mutant progenitor cell. J Pathol. 2020;250:346–57. https://doi.org/10.1002/path.5376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen TB, Sakata-Yanagimoto M, Asabe Y, Matsubara D, Kano J, Yoshida K, et al. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J. 2017;7:e516 https://doi.org/10.1038/bcj.2016.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scourzic L, Couronné L, Pedersen MT, Della Valle V, Diop M, Mylonas E, et al. DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia. 2016;30:1388–98. https://doi.org/10.1038/leu.2016.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–32. https://doi.org/10.1016/j.ccell.2015.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu KT, Kanno Y, Cannons JL, Handon R, Bible P, Elkahloun AG, et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity. 2011;35:622–32. https://doi.org/10.1016/j.immuni.2011.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Attygalle A, Al-Jehani R, Diss TC, Munson P, Liu H, Du M-Q, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood. 2002;99:627–33. https://doi.org/10.1182/blood.V99.2.627.

    Article  CAS  PubMed  Google Scholar 

  25. Hippen AA, Falco MM, Weber LM, Erkan EP, Zhang K, Doherty JA, et al. miQC: an adaptive probabilistic framework for quality control of single-cell RNA-sequencing data. PLOS Comput Biol. 2021;17:e1009290 https://doi.org/10.1371/journal.pcbi.1009290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Na F, Pan X, Chen J, Chen X, Wang M, Chi P, et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming. Nat Cancer. 2022;3:753–67. https://doi.org/10.1038/s43018-022-00361-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Chen X, Tan P, Wang Y, Pan X, Lin T, et al. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer. Cancer Cell. 2022;40:1044–.e1048. https://doi.org/10.1016/j.ccell.2022.08.010.

    Article  CAS  PubMed  Google Scholar 

  28. Pritchett JC, Yang ZZ, Kim HJ, Villasboas JC, Tang X, Jalali S, et al. High-dimensional and single-cell transcriptome analysis of the tumor microenvironment in angioimmunoblastic T cell lymphoma (AITL). Leukemia. 2022;36:165–76. https://doi.org/10.1038/s41375-021-01321-2.

    Article  CAS  PubMed  Google Scholar 

  29. Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:371–5. https://doi.org/10.1038/ng.2916.

    Article  CAS  PubMed  Google Scholar 

  30. Cortes JR, Palomero T. The curious origins of angioimmunoblastic T-cell lymphoma. Curr Opin Hematol. 2016;23:434–43. https://doi.org/10.1097/MOH.0000000000000261.

    Article  CAS  PubMed  Google Scholar 

  31. Lemonnier F, Couronné L, Parrens M, Jaïs JP, Travert M, Lamant L, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120:1466–9. https://doi.org/10.1182/blood-2012-02-408542.

    Article  CAS  PubMed  Google Scholar 

  32. Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl J Med. 2012;366:95–96. https://doi.org/10.1056/NEJMc1111708.

    Article  PubMed  Google Scholar 

  33. Fukumoto K, Nguyen TB, Chiba S, Sakata-Yanagimoto M. Review of the biologic and clinical significance of genetic mutations in angioimmunoblastic T-cell lymphoma. Cancer Sci. 2018;109:490–6. https://doi.org/10.1111/cas.13393.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18. https://doi.org/10.1182/blood-2010-12-325241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24. https://doi.org/10.1016/j.ccr.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang L, Rodriguez B, Mayle A, Park HJ, Lin X, Luo M, et al. DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer Cell. 2016;29:922–34. https://doi.org/10.1016/j.ccell.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen C, Liu Y, Lu C, Cross JR, Morris JPT, Shroff AS, et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 2013;27:1974–85. https://doi.org/10.1101/gad.226613.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leca J, Lemonnier F, Meydan C, Foox J, El Ghamrasni S, Mboumba DL et al. IDH2 and TET2 mutations synergize to modulate T Follicular Helper cell functional interaction with the AITL microenvironment. Cancer Cell. 2023; https://doi.org/10.1016/j.ccell.2023.01.003.

  39. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010;207:339–44. https://doi.org/10.1084/jem.20092506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Janin M, Mylonas E, Saada V, Micol JB, Renneville A, Quivoron C, et al. Serum 2-hydroxyglutarate production in IDH1- and IDH2-mutated de novo acute myeloid leukemia: a study by the acute leukemia French association group. J Clin Oncol. 2014;32:297–305. https://doi.org/10.1200/jco.2013.50.2047.

    Article  CAS  PubMed  Google Scholar 

  41. Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol. 2012;5:5 https://doi.org/10.1186/1756-8722-5-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartz FH, Cai Q, Fellmann E, Hartmann S, Mäyränpää MI, Karjalainen-Lindsberg ML, et al. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J Pathol. 2017;242:129–33. https://doi.org/10.1002/path.4898.

    Article  CAS  PubMed  Google Scholar 

  43. Fujisawa M, Nguyen TB, Abe Y, Suehara Y, Fukumoto K, Suma S, et al. Clonal germinal center B cells function as a niche for T-cell lymphoma. Blood. 2022;140:1937–50. https://doi.org/10.1182/blood.2022015451.

    Article  CAS  PubMed  Google Scholar 

  44. Kelley J, de Bono B, Trowsdale J. IRIS: a database surveying known human immune system genes. Genomics. 2005;85:503–11. https://doi.org/10.1016/j.ygeno.2005.01.009.

    Article  CAS  PubMed  Google Scholar 

  45. Pan X, Wang J, Guo L, Na F, Du J, Chen X, et al. Identifying a confused cell identity for esophageal squamous cell carcinoma. Signal Transduct Target Ther. 2022;7:122 https://doi.org/10.1038/s41392-022-00946-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu P, Pan X, Chen C, Niu T, Shuai X, Wang J, et al. Nivolumab treatment of relapsed/refractory Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in adults. Blood. 2020;135:826–33. https://doi.org/10.1182/blood.2019003886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Chen and Liu laboratory for their invaluable suggestions and technical support. We thank Dr. Yuquan Wei for his generous support. We thank Dr. Renzhan Tong for his technical support. We thank the Core Facilities of West China Hospital for technical support.

Funding

This work was supported by the National Natural Science Foundation of China (82130007), the Sichuan Science and Technology Program (2018RZ0140, 2018JZ0077, 2022YFS0205), the Incubation Program for Clinical Trials (19HXFH030), the Achievement Transformation Project (CGZH21001), the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University (ZYJC21009, ZYGD22012, ZYJC21007), and the Translational Research Grant of NCRCH (2021WWB03).

Author information

Authors and Affiliations

Authors

Contributions

CC and YL conceived the project and designed experiments. ZW, JZ, ZZ, HL, PL, QZ, XD and FN performed experiments. XP performed bioinformatic analyses. ZW, JZ, XP, CC, TN and YL analyzed data. ZW, JZ, XP, TN and YL prepared and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ting Niu or Yu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Wang, Z., Pan, X. et al. DNMT3AR882H accelerates angioimmunoblastic T-cell lymphoma in mice. Oncogene 42, 1940–1950 (2023). https://doi.org/10.1038/s41388-023-02699-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02699-2

  • Springer Nature Limited

Navigation