Skip to main content

Advertisement

Log in

Taurodeoxycholic acid-YAP1 upregulates OTX1 in promoting gallbladder cancer malignancy through IFITM3-dependent AKT activation

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Orthodenticle homeobox (OTX1) is reported to be involved in numerous cancers, but the expression level and molecular function of OTX1 in gallbladder cancer (GBC) remain unknown. Here, we found the elevated level of OTX1 associated with poor prognosis in human gallbladder cancer. In vitro and in vivo studies of human gallbladder cancer cell lines demonstrated that overexpression of OTX1 promoted cell proliferation, whereas the downregulation inhibited it. Additionally, we found a tight correlation between the serum level of taurodeoxycholic acid (TDCA) and OTX1 expression. TDCA-induced activation of YAP1 by phosphorylation inhibition contributed to the transcriptional activation of OTX1. Mechanistically, we identified that OTX1 activated AKT signaling pathway by transactivating the expression of IFITM3 and thus promoted the proliferation of GBC cells. Taken together, our results showed that TDCA-YAP1-dependent expression of OTX1 regulated IFITM3 and affected GBC proliferation via the AKT signaling pathway. Our experiments also suggested that OTX1 is a novel therapeutic target for GBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Highly expressed OTX1 identified in GBC samples.
Fig. 2: Elevated OTX1 correlated with the poor prognosis of GBC patients.
Fig. 3: OTX1 promoted the proliferation of GBC cells in vitro and in vivo.
Fig. 4: Taurodeoxycholic acid (TDCA) induced YAP1 activation in elevating OTX1 expression in GBC.
Fig. 5: TDCA induced YAP1-OTX1 signaling in promoting GBC progression.
Fig. 6: High expression levels of OTX1 influenced the genes related to interferon responses.
Fig. 7: OTX1 regulated AKT signaling pathway via directly transactivating IFITM3.
Fig. 8: IFITM3 knockdown attenuated the tumor-promoting role of OTX1 on the proliferation of GBC cells in vitro and in vivo.

Similar content being viewed by others

Data availability

The primary RNA-Seq data generated for this study will be available in a public, open-access repository with an accession number at the time of publication. The public datasets analyzed during the current study are available in the repositories listed below: The Cancer Genome Atlas: TCGA-LUSC; TCGA-LUAD; TCGA-COAD; TCGA-UCEC; TCGA-STAD; TCGA-BRCA; TCGA-PRAD; TCGA-BLCA; TCGA-LIHC; TCGA-CHOL; TCGA-ESCA; TCGA-PAAD; TCGA-KIRP; TCGA-KIRC; TCGA-THCA; TCGA-KICH; TCGA-HNSC; TCGA-ACC; TCGA-LGG; TCGA-MESO; TCGA-SARC. Gene Expression Omnibus: GSE62335; GSE76633; GSE100363; GSE139682.

References

  1. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol. 2014;6:99–109.

    PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  3. Hickman L, Contreras C. Gallbladder cancer: diagnosis, surgical management, and adjuvant therapies. Surg Clin North Am. 2019;99:337–55.

    Article  PubMed  Google Scholar 

  4. Roa I, Araya JC, Villaseca M, De Aretxabala X, Riedemann P, Endoh K, et al. Preneoplastic lesions and gallbladder cancer: an estimate of the period required for progression. Gastroenterology. 1996;111:232–6.

    Article  CAS  PubMed  Google Scholar 

  5. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111–28.

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Kuang J, Zhang H, Chen W, Zheng X, Wang J, et al. Bile acid-microbiome interaction promotes gastric carcinogenesis. Adv Sci. 2022;9:e2200263.

    Article  Google Scholar 

  7. Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 2022;56:102452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma N, Yadav M, Tripathi G, Mathew B, Bindal V, Falari S, et al. Bile multi-omics analysis classifies lipid species and microbial peptides predictive of carcinoma of gallbladder. Hepatology. 2022;76:920–35.

    Article  CAS  PubMed  Google Scholar 

  9. Klein WH, Li X. Function and evolution of Otx proteins. Biochem Biophys Res Commun. 1999;258:229–33.

    Article  CAS  PubMed  Google Scholar 

  10. Kastury K, Druck T, Huebner K, Barletta C, Acampora D, Simeone A, et al. Chromosome locations of human EMX and OTX genes. Genomics. 1994;22:41–45.

    Article  CAS  PubMed  Google Scholar 

  11. Larsen KB, Lutterodt MC, Mollgard K, Moller M. Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain. J Histochem Cytochem. 2010;58:669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakurai Y, Kurokawa D, Kiyonari H, Kajikawa E, Suda Y, Aizawa S. Otx2 and Otx1 protect diencephalon and mesencephalon from caudalization into metencephalon during early brain regionalization. Dev Biol. 2010;347:392–403.

    Article  CAS  PubMed  Google Scholar 

  13. Pagani IS, Terrinoni A, Marenghi L, Zucchi I, Chiaravalli AM, Serra V, et al. The mammary gland and the homeobox gene Otx1. Breast J. 2010;16:S53–56.

    Article  PubMed  Google Scholar 

  14. Yu K, Cai XY, Li Q, Yang ZB, Xiong W, Shen T, et al. OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2014;444:1–5.

    Article  CAS  PubMed  Google Scholar 

  15. Terrinoni A, Pagani IS, Zucchi I, Chiaravalli AM, Serra V, Rovera F, et al. OTX1 expression in breast cancer is regulated by p53. Oncogene. 2011;30:3096–103.

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Miao Q, Xu CW, Huang JH, Zhou YF, Wu MJ. OTX1 contributes to hepatocellular carcinoma progression by regulation of ERK/MAPK pathway. J Korean Med Sci. 2016;31:1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin SC, Zhao Z, Sheng JX, Xu XH, Yao J, Lu JJ, et al. Downregulation of OTX1 attenuates gastric cancer cell proliferation, migration and invasion. Oncol Rep. 2018;40:1907–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuhn T, Stepien M, Lopez-Nogueroles M, Damms-Machado A, Sookthai D, Johnson T, et al. Prediagnostic plasma bile acid levels and colon cancer risk: a prospective study. J Natl Cancer Inst. 2020;112:516–24.

    Article  PubMed  Google Scholar 

  19. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018;360:876.

    Article  CAS  Google Scholar 

  20. Anakk S, Bhosale M, Schmidt VA, Johnson RL, Finegold MJ, Moore DD. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep. 2013;5:1060–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 2019;363:644–9.

    Article  CAS  PubMed  Google Scholar 

  22. de Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR, Kuipers F. New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr Opin Lipidol. 2018;29:194–202.

    Article  PubMed  Google Scholar 

  23. Liu R, Li X, Hylemon PB, Zhou H. Conjugated bile acids promote invasive growth of esophageal adenocarcinoma cells and cancer stem cell expansion via Sphingosine 1-Phosphate Receptor 2-Mediated Yes-associated protein activation. Am J Pathol. 2018;188:2042–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia P, Rosa L, Vargas S, Weber H, Espinoza JA, Suarez F, et al. Hippo-YAP1 is a prognosis marker and potentially targetable pathway in advanced gallbladder cancer. Cancers 2020;12:778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li M, Lu J, Zhang F, Li H, Zhang B, Wu X, et al. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway. Cancer Lett. 2014;355:201–9.

    Article  CAS  PubMed  Google Scholar 

  26. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26:1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, et al. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat Commun. 2018;9:2372.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol. 2021;475:205–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bo X, Wang J, Wang C, Nan L, Gao Z, Xin Y, et al. High infiltration of mast cells is associated with improved response to adjuvant chemotherapy in gallbladder cancer. Cancer Sci. 2020;111:817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dent P, Fang Y, Gupta S, Studer E, Mitchell C, Spiegel S, et al. Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin-sensitive mechanism in murine and human hepatocytes. Hepatology. 2005;42:1291–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou L, Li H, Zhang D, Chen L, Dong H, Yuan Y, et al. OTX1 promotes tumorigenesis and progression of cervical cancer by regulating the Wnt signaling pathway. Oncol Rep. 2022;48:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chai J, Xu T, Yang Y, Yuan Y, Xu J, Liu J, et al. Overexpression of OTX1 promotes tumorigenesis in patients with esophageal squamous cell carcinoma. Pathol Res Pract. 2022;232:153841.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang L, Zuo Z, Lin J, Yang C. Orthodenticle homeobox OTX1 is a potential prognostic biomarker for bladder cancer. Bioengineered. 2021;12:6559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schramm C. Bile acids, the microbiome, immunity, and liver tumors. N Engl J Med. 2018;379:888–90.

    Article  PubMed  Google Scholar 

  36. Lin R, Zhan M, Yang L, Wang H, Shen H, Huang S, et al. Deoxycholic acid modulates the progression of gallbladder cancer through N(6)-methyladenosine-dependent microRNA maturation. Oncogene. 2020;39:4983–5000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai X, Wei H, Liu W, Coker OO, Gou H, Liu C, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut 2022;71:2439–50.

    Article  CAS  PubMed  Google Scholar 

  38. Hong J, Behar J, Wands J, Resnick M, Wang LJ, Delellis RA, et al. Bile acid reflux contributes to development of esophageal adenocarcinoma via activation of phosphatidylinositol-specific phospholipase Cgamma2 and NADPH oxidase NOX5-S. Cancer Res. 2010;70:1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ballout F, Lu H, Chen L, Sriramajayam K, Que J, Meng Z, et al. APE1 redox function is required for activation of Yes-associated protein 1 under reflux conditions in Barrett’s-associated esophageal adenocarcinomas. J Exp Clin Cancer Res. 2022;41:264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pepe-Mooney BJ, Dill MT, Alemany A, Ordovas-Montanes J, Matsushita Y, Rao A, et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell. 2019;25:23–38.e28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu B, Su J, Shi Q, Liu Q, Ma J, Ru G, et al. KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling. Nat Commun. 2022;13:2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol. 2022;76:135–47.

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Chen J, Liang J, Zhang Y, Wang Q, Ren X, et al. Modeling hepatoblastoma development with human fetal liver organoids reveals YAP1 activation is sufficient for tumorigenesis. Protein Cell. 2022;13:683–8.

    Article  CAS  PubMed  Google Scholar 

  44. Chen X, Li Y, Luo J, Hou N. Molecular mechanism of Hippo-YAP1/TAZ pathway in heart development, disease, and regeneration. Front Physiol. 2020;11:389.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Perra A, Kowalik MA, Ghiso E, Ledda-Columbano GM, Di Tommaso L, Angioni MM, et al. YAP activation is an early event and a potential therapeutic target in liver cancer development. J Hepatol. 2014;61:1088–96.

    Article  CAS  PubMed  Google Scholar 

  46. Hou Y, Wang S, Gao M, Chang J, Sun J, Qin L, et al. Interferon-Induced Transmembrane Protein 3 Expression upregulation is involved in progression of hepatocellular carcinoma. Biomed Res Int. 2021;2021:5612138.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Coomer CA, Rahman K, Compton AA. CD225 proteins: a family portrait of fusion regulators. Trends Genet. 2021;37:406–10.

    Article  CAS  PubMed  Google Scholar 

  48. Shi G, Schwartz O, Compton AA. More than meets the I: the diverse antiviral and cellular functions of interferon-induced transmembrane proteins. Retrovirology. 2017;14:53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhao X, Li J, Winkler CA, An P, Guo JT. IFITM genes, variants, and their roles in the control and pathogenesis of viral infections. Front Microbiol. 2018;9:3228.

    Article  PubMed  Google Scholar 

  50. Chu PY, Huang WC, Tung SL, Tsai CY, Chen CJ, Liu YC, et al. IFITM3 promotes malignant progression, cancer stemness and chemoresistance of gastric cancer by targeting MET/AKT/FOXO3/c-MYC axis. Cell Biosci. 2022;12:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu X, Chen L, Fan Y, Hong Y, Yang X, Li Y, et al. IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-beta signaling pathway. Cell Death Dis. 2019;10:517.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li D, Peng Z, Tang H, Wei P, Kong X, Yan D, et al. KLF4-mediated negative regulation of IFITM3 expression plays a critical role in colon cancer pathogenesis. Clin Cancer Res. 2011;17:3558–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang M, Gao H, Chen P, Jia J, Wu S. Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle. Oncol Rep. 2013;30:171–8.

    Article  CAS  PubMed  Google Scholar 

  54. Min J, Hu J, Luo C, Zhu J, Zhao J, Zhu Z, et al. IFITM3 upregulates c-myc expression to promote hepatocellular carcinoma proliferation via the ERK1/2 signalling pathway. Biosci Trends. 2020;13:523–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to our laboratory members and professors for their insightful comments. This work was supported by the National Natural Science Foundation of China (Grant number: 82072668).

Author information

Authors and Affiliations

Authors

Contributions

WW, HW, and CCZ conceived the project. RFY, LHY, MML, and FYW designed the experiments. RFY, LHY, MML, and FYW performed most of the experiments. YHS, RX, and JJL assisted with the animal experiments and data collection. YYZ, YL, and YJ provided technical suggestions. RFY and FYW wrote the first version of the manuscript. WW and HW revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Chenchen Zhao, Hui Wang or Wei Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Yang, L., Long, M. et al. Taurodeoxycholic acid-YAP1 upregulates OTX1 in promoting gallbladder cancer malignancy through IFITM3-dependent AKT activation. Oncogene 42, 1466–1477 (2023). https://doi.org/10.1038/s41388-023-02660-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02660-3

  • Springer Nature Limited

This article is cited by

Navigation