Skip to main content

Advertisement

Log in

STAMBPL1 promotes breast cancer cell resistance to cisplatin partially by stabilizing MKP-1 expression

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Dual-specificity mitogen-activated protein kinase phosphatase-1 (MKP-1/DUSP1/CL-100) has been documented to promote breast cancer cell survival and chemoresistance. MKP-1 is an unstable protein that is ubiquitinated and degraded via the ubiquitin-proteasome system. However, it is not clear how MKP-1 protein stability is regulated in breast cancer. In this study, we performed a genome-wide siRNA library screen of deubiquitinases (DUBs) and identified STAMBPL1 as an MKP-1 DUB in breast cancer cells. STAMBPL1 interacts with MKP-1 and stabilizes MKP-1 via deubiquitination. Both STAMBPL1 and MKP-1 depletion sensitize breast cancer cells to cisplatin in vitro and in vivo, and ectopic overexpression of MKP-1 partially rescues STAMBPL1 depletion-induced cisplatin sensitivity. Furthermore, STAMBPL1 and MKP-1 depletion increased breast cancer sensitivity to cisplatin by increasing the phosphorylation and activation of c-Jun N-terminal protein kinase (JNK). Collectively, our findings not only identify STAMBPL1 as an MKP-1 DUB but also reveal a critical mechanism that regulates MKP-1 expression in breast cancer. Our findings indicate that the STAMBPL1/MKP-1 axis represents a potential therapeutic target in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: STAMBPL1 is a candidate DUB that stabilizes MKP-1 expression.
Fig. 2: STAMBPL1 stabilizes MKP-1 protein through deubiquitination.
Fig. 3: STAMBPL1 interacts with MKP-1.
Fig. 4: STAMBPL1 depletion sensitizes breast cancer cells to cisplatin treatment.
Fig. 5: STAMBPL1 overexpression inhibits breast cancer cell sensitivity to cisplatin.
Fig. 6: STAMBPL1 promotes breast cancer cell resistance to cisplatin treatment via MKP-1/JNK signaling.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  3. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16:61–70.

    Article  PubMed  Google Scholar 

  4. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.

    Article  CAS  PubMed  Google Scholar 

  5. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.

    Article  CAS  PubMed  Google Scholar 

  6. Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharm. 2015;172:4228–37.

    Article  CAS  Google Scholar 

  7. Hill DP, Harper A, Malcolm J, McAndrews MS, Mockus SM, Patterson SE, et al. Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance. BMC Cancer. 2019;19:1039.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92.

    Article  CAS  PubMed  Google Scholar 

  9. Rincon R, Zazo S, Chamizo C, Manso R, Gonzalez-Alonso P, Martin-Aparicio E, et al. c-Jun N-terminal kinase inactivation by mitogen-activated protein kinase phosphatase 1 determines resistance to taxanes and anthracyclines in breast cancer. Mol Cancer Ther. 2016;15:2780–90.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med. 2006;203:131–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen J, Zhang Y, Yu H, Shen B, Liang Y, Jin R, et al. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med. 2016;5:2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keyse SM. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 2000;12:186–92.

    Article  CAS  PubMed  Google Scholar 

  13. Liao Q, Guo J, Kleeff J, Zimmermann A, Buchler MW, Korc M, et al. Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology. 2003;124:1830–45.

    Article  CAS  PubMed  Google Scholar 

  14. Wang HY, Cheng Z, Malbon CC. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 2003;191:229–37.

    Article  CAS  PubMed  Google Scholar 

  15. Vicent S, Garayoa M, Lopez-Picazo JM, Lozano MD, Toledo G, Thunnissen FB, et al. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res. 2004;10:3639–49.

    Article  CAS  PubMed  Google Scholar 

  16. Liu F, Gore AJ, Wilson JL, Korc M. DUSP1 is a novel target for enhancing pancreatic cancer cell sensitivity to gemcitabine. PLoS ONE. 2014;9:e84982.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Xu J, Zhou JY, Liu Y, Wu GS. Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res. 2006;66:8870–7.

    Article  CAS  PubMed  Google Scholar 

  18. Fang J, Ye Z, Gu F, Yan M, Lin Q, Lin J, et al. DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol Lett. 2018;16:1869–75.

    PubMed  PubMed Central  Google Scholar 

  19. Kang YS, Seok HJ, Jeong EJ, Kim Y, Yun SJ, Min JK, et al. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells. Biochem Biophys Res Commun. 2016;478:403–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Arcy P, Wang X, Linder S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther. 2015;147:32–54.

    Article  PubMed  Google Scholar 

  22. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lornejad-Schafer M, Schafer C, Richter L, Grune T, Haussinger D, Schliess F. Osmotic regulation of MG-132-induced MAP-kinase phosphatase MKP-1 expression in H4IIE rat hepatoma cells. Cell Physiol Biochem. 2005;16:193–206.

    Article  PubMed  Google Scholar 

  24. Lin YW, Yang JL. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem. 2006;281:915–26.

    Article  CAS  PubMed  Google Scholar 

  25. Guo F, Zhang C, Wang F, Zhang W, Shi X, Zhu Y, et al. Deubiquitinating enzyme USP33 restrains docetaxel-induced apoptosis via stabilising the phosphatase DUSP1 in prostate cancer. Cell Death Differ. 2020;27:1938–51.

  26. Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K, et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature. 2008;455:358–62.

    Article  CAS  PubMed  Google Scholar 

  27. Lavorgna A, Harhaj EW. An RNA interference screen identifies the Deubiquitinase STAMBPL1 as a critical regulator of human T-cell leukemia virus type 1 tax nuclear export and NF-kappaB activation. J Virol. 2012;86:3357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woo SM, Seo SU, Kubatka P, Min KJ, Kwon TK. Honokiol enhances TRAIL-mediated apoptosis through STAMBPL1-induced survivin and c-FLIP degradation. Biomolecules. 2019;9:838.

  29. Yu DJ, Qian J, Jin X, Li J, Guo CX, Yue XC. STAMBPL1 knockdown has antitumour effects on gastric cancer biological activities. Oncol Lett. 2019;18:4421–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shahriyar SA, Woo SM, Seo SU, Min KJ, Kwon TK. Cepharanthine enhances TRAIL-mediated apoptosis through STAMBPL1-mediated downregulation of survivin expression in renal carcinoma cells. Int J Mol Sci. 2018;19:3280.

  31. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.

    Article  CAS  PubMed  Google Scholar 

  32. Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173:879–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petrelli F, Barni S, Bregni G, de Braud F, Di Cosimo S. Platinum salts in advanced breast cancer: a systematic review and meta-analysis of randomized clinical trials. Breast Cancer Res Treat. 2016;160:425–37.

    Article  CAS  PubMed  Google Scholar 

  34. Eckstein N. Platinum resistance in breast and ovarian cancer cell lines. J Exp Clin Cancer Res. 2011;30:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Zhou JY, Wu GS. ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res. 2007;67:11933–41.

    Article  CAS  PubMed  Google Scholar 

  36. Liu R, Zheng HQ, Zhou Z, Dong JT, Chen C. KLF5 promotes breast cell survival partially through fibroblast growth factor-binding protein 1-pERK-mediated dual specificity MKP-1 protein phosphorylation and stabilization. J Biol Chem. 2009;284:16791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sacco JJ, Coulson JM, Clague MJ, Urbe S. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life. 2010;62:140–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen X, Shi H, Bi X, Li Y, Huang Z. Targeting the deubiquitinase STAMBPL1 triggers apoptosis in prostate cancer cells by promoting XIAP degradation. Cancer Lett. 2019;456:49–58.

    Article  CAS  PubMed  Google Scholar 

  39. Liu R, Chen H, Zhao P, Chen CH, Liang H, Yang C, et al. Mifepristone derivative FZU-00,003 suppresses triple-negative breast cancer cell growth partially via miR-153-KLF5 axis. Int J Biol Sci. 2020;16:611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 2015;6:8471.

    Article  CAS  PubMed  Google Scholar 

  41. Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, et al. Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem. 2005;280:41553–61.

    Article  CAS  PubMed  Google Scholar 

  42. Liu R, Shi P, Nie Z, Liang H, Zhou Z, Chen W, et al. Mifepristone suppresses basal triple-negative breast cancer stem cells by down-regulating KLF5 expression. Theranostics. 2016;6:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [2020YFA0112300 and 2018YFC2000400 to CC], National Natural Science Foundation of China [81772847, 82073270 and U1502222 to RL; 81572610 to JH; 81830087 and U2102203 to CC], a Shortage of Talent of Project in Guangdong Province, China [4YF16002G], Project of Innovative Research Team of Yunnan Province [2019HC005] and Yunnan Fundamental Research Projects (202001AW070018 and 202101AS070050).

Author information

Authors and Affiliations

Authors

Contributions

RL and CC designed the experiments. RL, GY, and MB carried out the experiments and analyzed the data. XJ and WL helped to perform the animal experiments. ZZ, XM, DZ, and XR provided technical support. RL wrote the manuscript, JH, RL, and CC revised the manuscript.

Corresponding authors

Correspondence to Rong Liu, Jian Huang or Ceshi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Yang, G., Bao, M. et al. STAMBPL1 promotes breast cancer cell resistance to cisplatin partially by stabilizing MKP-1 expression. Oncogene 41, 2265–2274 (2022). https://doi.org/10.1038/s41388-022-02252-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02252-7

  • Springer Nature Limited

This article is cited by

Navigation