Skip to main content

Advertisement

Log in

NK and NKT cells have distinct properties and functions in cancer

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Natural killer (NK) and natural killer T (NKT) cells are two important cell subsets of the innate immune system. NK and NKT cells share many phenotypes and functions for anti-tumor immunity; however, the dynamic changes in phenotypes and functional interactions within the tumor microenvironment during tumor development and progression are unknown. Here we report that NK and NKT cells have distinct properties, metabolic profiles, and functions during tumor development. Using the mouse E0771 breast cancer and B16 melanoma models, we found that both NK and NKT cells are dynamically involved in the immune responses to cancer but have distinct distributions and phenotypic profiles in tumor sites and other peripheral organs during the course of tumor development and progression. In the early stages of tumor development, both NK and NKT cells exhibit effector properties. In the later cancer stages, NK and NKT cells have impaired cytotoxic capacities and dysfunctional states. NK cells become senescent cells, while NKT cells, other than invariant NKT (iNKT) cells, are exhausted in the advanced cancers. In contrast, iNKT cells develop increases in activation and effector function within the breast tumor microenvironment. In addition, senescent NK cells have heightened glucose and lipid metabolism, but exhausted NKT cells display unbalanced metabolism in tumor microenvironments of both breast cancer and melanoma tumor models. These studies provide a better understanding of the dynamic and distinct functional roles of NK and NKT cells in anti-tumor immunity, which may facilitate the development of novel immunotherapies targeting NK and NKT cells for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Distinct distributions of NK and NKT cells in the breast cancer E0771 tumor-bearing mice during the tumor development and progression.
Fig. 2: Characteristics of NK cells in the breast cancer E0771 tumor-bearing mice.
Fig. 3: Characteristics of NKT cells in the breast cancer E0771 tumor-bearing mice.
Fig. 4: NKT cells but not NK cells are exhausted in breast cancer E0771 tumor-bearing mice.
Fig. 5: iNKT cells have an activated state in the breast cancer tumor-bearing mice.
Fig. 6: NK cells are senescent cells induced by tumor cells in the tumor-bearing mice.
Fig. 7: NK and NKT cells in breast cancer have different metabolic profiles.

Similar content being viewed by others

Data availability

All data presented in this study are included in this published article and the supplementary information files.

References

  1. Hu ZI, McArthur HL. Immunotherapy in breast cancer: the new frontier. Curr Breast Cancer Rep. 2018;10:35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polk A, Svane IM, Andersson M, Nielsen D. Checkpoint inhibitors in breast cancer—current status. Cancer Treat Rev. 2018;63:122–34.

    Article  CAS  PubMed  Google Scholar 

  3. Lyons TG, Dickler MN, Comen EE. Checkpoint inhibitors in the treatment of breast cancer. Curr Oncol Rep. 2018;20:51.

    Article  PubMed  Google Scholar 

  4. Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2011;23:286–92.

    Article  CAS  PubMed  Google Scholar 

  5. Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33:364–72.

    Article  CAS  PubMed  Google Scholar 

  6. Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. 2018;18:556.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thommen DS, Schumacher TNT. Cell dysfunction in cancer. Cancer Cell. 2018;33:547–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12:239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu J, Freud AG, Caligiuri MA. Location and cellular stages of natural killer cell development. Trends Immunol. 2013;34:573–82.

    Article  CAS  PubMed  Google Scholar 

  10. Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol. 1997;15:535–62.

    Article  CAS  PubMed  Google Scholar 

  11. Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, Merli P, et al. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol. 2014;164:253–64.

    Article  CAS  PubMed  Google Scholar 

  12. Caligiuri MA. Human natural killer cells. Blood. 2008;112:461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation of mouse NK cells is a 4-stage developmental program. Blood. 2009;113:5488–96.

    Article  CAS  PubMed  Google Scholar 

  14. Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology. 2011;133:350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol. 2002;2:557–68.

    Article  CAS  PubMed  Google Scholar 

  16. Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res. 2008;101:277–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121:3609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’konek JJ, Kato S, Takao S, Izhak L, Xia Z, Illarionov P, et al. beta-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res. 2013;19:4404–11.

    Article  PubMed  Google Scholar 

  19. Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, et al. A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol. 2009;182:2492–501.

    Article  CAS  PubMed  Google Scholar 

  20. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol. 2011;138:255–65.

    Article  CAS  PubMed  Google Scholar 

  21. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med. 2000;191:661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, et al. Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress. Front Immunol. 2015;6:482.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shifrin N, Raulet DH, Ardolino M. NK cell self tolerance, responsiveness and missing self recognition. Semin Immunol. 2014;26:138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ardolino M, Azimi CS, Iannello A, Trevino TN, Horan L, Zhang L, et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Investig. 2014;124:4781–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Krneta T, Gillgrass A, Chew M, Ashkar AA. The breast tumor microenvironment alters the phenotype and function of natural killer cells. Cell Mol Immunol. 2016;13:628–39.

    Article  CAS  PubMed  Google Scholar 

  26. Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 2012;72:1407–15.

    Article  CAS  PubMed  Google Scholar 

  27. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419:734–8.

    Article  CAS  PubMed  Google Scholar 

  28. Gill S, Vasey AE, De Souza A, Baker J, Smith AT, Kohrt HE, et al. Rapid development of exhaustion and down-regulation of eomesodermin limit the antitumor activity of adoptively transferred murine natural killer cells. Blood. 2012;119:5758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, et al. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene. 2017;36:6143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Investig. 2018;128:4654–68.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Investig. 2014;124:3725–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Izhak L, Ambrosino E, Kato S, Parish ST, O’konek JJ, Weber H, et al. Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res. 2013;73:1514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McEwen-Smith RM, Salio M, Cerundolo V. The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol Res. 2015;3:425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schule JM, Bergkvist L, Hakansson L, Gustafsson B, Hakansson A. CD28 expression in sentinel node biopsies from breast cancer patients in comparison with CD3-zeta chain expression. J Transl Med. 2004;2:45.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Webb JR, Wick DA, Nielsen JS, Tran E, Milne K, McMurtrie E, et al. Profound elevation of CD8+ T cells expressing the intraepithelial lymphocyte marker CD103 (alphaE/beta7 Integrin) in high-grade serous ovarian cancer. Gynecologic Oncol. 2010;118:228–36.

    Article  CAS  Google Scholar 

  36. Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Investig. 2020;130:1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6:1294–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye J, Peng G. Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology. 2015;4:e994398.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ye J, Huang X, Hsueh EC, Zhang Q, Ma C, Zhang Y, et al. Human regulatory T cells induce T-lymphocyte senescence. Blood. 2012;120:2021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, et al. Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. J Immunol. 2013;190:2403–14.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9:249.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020;17:27–35.

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, Ma C, Zhang Q, Ye J, Wang F, Zhang Y, et al. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget. 2015;6:17462–78.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parekh VV, Wilson MT, Olivares-Villagómez D, Singh AK, Wu L, Wang CR, et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Investig. 2005;115:2572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med. 2000;192:741–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muller-Durovic B, Lanna A, Covre LP, Mills RS, Henson SM, Akbar AN. Killer cell lectin-like receptor G1 Inhibits NK cell function through activation of adenosine 5’-monophosphate-activated protein kinase. J Immunol. 2016;197:2891–9.

    Article  PubMed  Google Scholar 

  47. Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK cell IFN-gamma production in response to mature dendritic cells. J Immunol. 2014;192:4184–91.

    Article  CAS  PubMed  Google Scholar 

  48. Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-gamma production. Crit Rev Immunol. 2016;36:131–47.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mah AY, Rashidi A, Keppel MP, Saucier N, Moore EK, Alinger JB, et al. Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight. 2017;2:2.

    Article  Google Scholar 

  50. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific metabolic requirements for NK Cell IFN-gamma production. J Immunol. 2015;194:1954–62.

    Article  CAS  PubMed  Google Scholar 

  51. Webb TJ, Carey GB, East JE, Sun W, Bollino DR, Kimball AS, et al. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathog Dis. 2016;74:74.

    Article  Google Scholar 

  52. Kim YH, Kumar A, Chang CH, Pyaram K. Reactive oxygen species regulate the inflammatory function of NKT cells through promyelocytic leukemia zinc finger. J Immunol. 2017;199:3478–87.

    Article  CAS  PubMed  Google Scholar 

  53. Ververs FA, Kalkhoven E, Van’t Land B, Boes M, Schipper HS. Immunometabolic activation of invariant natural killer T cells. Front Immunol. 2018;9:1192.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, et al. TLR8-mediated metabolic control of human Treg function: a mechanistic target for cancer immunotherapy. Cell Metab. 2019;29:103–23. e105-123

    Article  CAS  PubMed  Google Scholar 

  55. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  Google Scholar 

  56. Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Investig. 2011;121:2350–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844–52.

    Article  CAS  PubMed  Google Scholar 

  59. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gardiner CM, Finlay DK. What fuels natural killers? Metabolism and NK cell responses. Front Immunol. 2017;8:367.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kobayashi T, Mattarollo SR. Natural killer cell metabolism. Mol Immunol. 2019;115:3–11.

    Article  CAS  PubMed  Google Scholar 

  63. Shin JH, Zhang L, Murillo-Sauca O, Kim J, Kohrt HE, Bui JD, et al. Modulation of natural killer cell antitumor activity by the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2013;110:12391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Qingsheng Mi at the Henry Ford Health System to provide mouse CD1d-PBS-57 and control CD1d-unloaded tetramers for the studies. We also thank Joy Eslick and Sherri Koehm for FACS and analyses.

Funding

This work was partially supported by grants from the American Cancer Society (RSG-10-160-01-LIB, to GP), Melanoma Research Alliance (to GP), and the NIH (CA184379, CA242188, CA237149, and AG067441 to GP).

Author information

Authors and Affiliations

Authors

Contributions

XL, LL, and GP: designed research, analyzed data, prepared figures and wrote the paper. XL, LL, FS, LH, YZ, and CZ performed experiments. DH: advised the design of research and discussed the manuscript.

Corresponding author

Correspondence to Guangyong Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All the animal experiments have been approved by the Institutional Animal Care Committee in Saint Louis University (protocol No. 2411).

Consent for publication

All authors agree with the submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, L., Si, F. et al. NK and NKT cells have distinct properties and functions in cancer. Oncogene 40, 4521–4537 (2021). https://doi.org/10.1038/s41388-021-01880-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01880-9

  • Springer Nature Limited

This article is cited by

Navigation