Skip to main content

Advertisement

Log in

FGF19 and FGFR4 promotes the progression of gallbladder carcinoma in an autocrine pathway dependent on GPBAR1-cAMP-EGR1 axis

  • Article
  • Published:
Oncogene Submit manuscript

A Correction to this article was published on 13 September 2023

This article has been updated

Abstract

Treatment options for gallbladder carcinoma (GBC) are limited and GBC prognosis remains poor. There is no well-accepted targeted therapy to date, so effective biomarkers of GBC are urgently needed. Here we investigated the expression and correlations of fibroblast growth factor receptors (FGFR1-4) and 18 fibroblast growth factors (FGFs) in two independent patient cohorts and evaluated their prognostic significance. Consequently, we demonstrated that both FGF19 and FGFR4 were unfavorable prognostic biomarkers, and their co-expression was a more sensitive predictor. By analyzing the correlations between all 18 FGFs and FGFR4, we showed that FGF19 expression was significantly associated with FGFR4 and promoted GBC progression via stimulating FGFR4. With experiments using GBC cells, GPBAR1−/− mice models, and human subjects, we demonstrated that elevated bile acids (BAs) could increase the transcription and expression of FGF19 and FGFR4 by activating GPBAR1-cAMP-EGR1 pathway. FGF19 secreted from GBC cells promoted GBC progression by stimulating FGFR4 and downstream ERK in an autocrine manner with bile as a potential carrier. Patients with GBC had significantly higher FGF19 in serum and bile, compared to patients with cholelithiasis. BLU9931 inhibited FGFR4 and attenuated its oncogenic effects in GBC cell line. In conclusion, upregulation of BAs elevated co-expression of FGF19 and FGFR4 by activating GPBAR1-cAMP-EGR1 pathway. Co-expression of FGF19 and FGFR4 was a sensitive and unfavorable prognostic marker. GBC cells secreted FGF19 and facilitated progression by activating FGFR4 with bile as a potential carrier in an autocrine pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: FGFR4 correlated with progression and poor prognosis of GBC.
Fig. 2: FGF19 was associated with FGFR4 expression and progression of GBC.
Fig. 3: Both FGF19 and FGFR4 were required in the proliferation and invasion of GBC.
Fig. 4: FGF19 was secreted from GBC cells and activated FGFR4 in an autocrine pathway.
Fig. 5: FGFR4 and FGF19 expression were induced by BA-activated GPBAR1 dependent on EGR1.
Fig. 6: GPBAR1 regulated the transcription and expression of FGF19 and FGFR4 in a Gs-cAMP-EGR1 axis.
Fig. 7: Co-expression of FGF19 and FGFR4 was a more sensitive prognostic factor of GBC.
Fig. 8: The schematic illustration of BA-regulated GBC progression with FGF19–FGFR4 autocrine loop.

Similar content being viewed by others

Change history

References

  1. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–10.

    Article  CAS  PubMed  Google Scholar 

  2. Xu YF, Liu ZL, Pan C, Yang XQ, Ning SL, Liu HD, et al. HMGB1 correlates with angiogenesis and poor prognosis of perihilar cholangiocarcinoma via elevating VEGFR2 of vessel endothelium. Oncogene. 2019;38:868–80.

    Article  CAS  PubMed  Google Scholar 

  3. Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX. New horizons for precision medicine in biliary tract cancers. Cancer Discov. 2017;7:943–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valle JW, Kelley RK, Nervi B, Oh DY, Zhu AX. Biliary tract cancer. Lancet. 2021;397:428–44.

    Article  CAS  PubMed  Google Scholar 

  5. Sun R, Liu Z, Qiu B, Chen T, Li Z, Zhang X, et al. Annexin10 promotes extrahepatic cholangiocarcinoma metastasis by facilitating EMT via PLA2G4A/PGE2/STAT3 pathway. EBioMedicine. 2019;47:142–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mitin T, Enestvedt CK, Jemal A, Sineshaw HM. Limited use of adjuvant therapy in patients with resected gallbladder cancer despite a strong association with survival. J Natl Cancer Inst. 2017;109.

  7. Henley SJ, Weir HK, Jim MA, Watson M, Richardson LC. Gallbladder cancer incidence and mortality, United States 1999–2011. Cancer Epidemiol, Biomark Prev. 2015;24:1319–26.

    Article  Google Scholar 

  8. Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet. 2014;46:872–6.

    Article  CAS  PubMed  Google Scholar 

  9. Javle M, Bekaii-Saab T, Jain A, Wang Y, Kelley RK, Wang K, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer. 2016;122:3838–47.

    Article  CAS  PubMed  Google Scholar 

  10. Mhatre S, Wang Z, Nagrani R, Badwe R, Chiplunkar S, Mittal B, et al. Common genetic variation and risk of gallbladder cancer in India: a case–control genome-wide association study. Lancet Oncol. 2017;18:535–44.

    Article  PubMed  Google Scholar 

  11. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34:280–300.

    Article  CAS  PubMed  Google Scholar 

  12. Wiedemann M, Trueb B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. Genomics. 2000;69:275–9.

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Yang X, Li Z, Li S, Guo S, Ismail S, et al. Sprouty2 correlates with favorable prognosis of gastric adenocarcinoma via suppressing FGFR2-induced ERK phosphorylation and cancer progression. Oncotarget. 2017;8:4888–4900.

    Article  PubMed  Google Scholar 

  14. Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem. 2000;275:15482–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sugiyama N, Varjosalo M, Meller P, Lohi J, Hyytiainen M, Kilpinen S, et al. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation. Cancer Res. 2010;70:7851–61.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor JGT, Cheuk AT, Tsang PS, Chung JY, Song YK, Desai K, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Investig. 2009;119:3395–407.

    CAS  PubMed  Google Scholar 

  17. Ye YW, Zhou Y, Yuan L, Wang CM, Du CY, Zhou XY, et al. Fibroblast growth factor receptor 4 regulates proliferation and antiapoptosis during gastric cancer progression. Cancer. 2011;117:5304–13.

    Article  CAS  PubMed  Google Scholar 

  18. Hagel M, Miduturu C, Sheets M, Rubin N, Weng W, Stransky N, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5:424–37.

    Article  CAS  PubMed  Google Scholar 

  19. Xu YF, Yang XQ, Lu XF, Guo S, Liu Y, Iqbal M, et al. Fibroblast growth factor receptor 4 promotes progression and correlates to poor prognosis in cholangiocarcinoma. Biochem Biophys Res Commun. 2014;446:54–60.

    Article  CAS  PubMed  Google Scholar 

  20. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.

    Article  CAS  PubMed  Google Scholar 

  21. Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, et al. Identification of a hormonal basis for gallbladder filling. Nat Med. 2006;12:1253–5.

    Article  CAS  PubMed  Google Scholar 

  22. Elzi DJ, Song M, Blackman B, Weintraub ST, Lopez-Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song KH, Li T, Owsley E, Strom S, Chiang JY. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology. 2009;49:297–305.

    Article  CAS  PubMed  Google Scholar 

  24. Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ, Jansen PL, et al. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology. 2012;55:575–83.

    Article  CAS  PubMed  Google Scholar 

  25. Li T, Apte U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv Pharm. 2015;74:263–302.

    Article  Google Scholar 

  26. Keitel V, Stindt J, Haussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol. 2019;256:19–49.

    Article  CAS  PubMed  Google Scholar 

  27. Yang F, Mao C, Guo L, Lin J, Ming Q, Xiao P, et al. Structural basis of GPBAR activation and bile acid recognition. Nature. (2020);587:499–504.

  28. Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis.2019;1865:895–911.

    Article  CAS  PubMed  Google Scholar 

  29. Keitel V, Haussinger D. TGR5 in cholangiocytes. Curr Opin Gastroenterol. 2013;29:299–304.

    Article  CAS  PubMed  Google Scholar 

  30. Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25:552–63.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu B, Chen T, Sun R, Liu Z, Zhang X, Li Z, et al. Sprouty4 correlates with favorable prognosis in perihilar cholangiocarcinoma by blocking the FGFR-ERK signaling pathway and arresting the cell cycle. EBioMedicine. 2019;50:166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, Ahronian LG, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017;7:252–63.

    Article  CAS  PubMed  Google Scholar 

  34. Heinzle C, Erdem Z, Paur J, Grasl-Kraupp B, Holzmann K, Grusch M, et al. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr Pharm Des. 2014;20:2881–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8:235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74:3306–16.

    Article  CAS  PubMed  Google Scholar 

  37. Wu X, Li Y. Therapeutic utilities of fibroblast growth factor 19. Expert Opin Ther Targets. 2011;15:1307–16.

    Article  CAS  PubMed  Google Scholar 

  38. Li F, Li Z, Han Q, Cheng Y, Ji W, Yang Y, et al. Enhanced autocrine FGF19/FGFR4 signaling drives the progression of lung squamous cell carcinoma, which responds to mTOR inhibitor AZD2104. Oncogene. 2020;39:3507–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tiong KH, Tan BS, Choo HL, Chung FF, Hii LW, Tan SH, et al. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget. 2016;7:57633–50.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao L, Lang L, Zhao X, Shay C, Shull AY, Teng Y. FGF19 amplification reveals an oncogenic dependency upon autocrine FGF19/FGFR4 signaling in head and neck squamous cell carcinoma. Oncogene. 2019;38:2394–404.

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta. 2019;1865:895-911.

  42. Plevris JN, Bouchier IA. Defective acid base regulation by the gall bladder epithelium and its significance for gall stone formation. Gut. 1995;37:127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology. 2009;49:1228–35.

    Article  CAS  PubMed  Google Scholar 

  44. Reue K, Lee JM, Vergnes L. Regulation of bile acid homeostasis by the intestinal Diet1-FGF15/19 axis. Curr Opin Lipidol. 2014;25:140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607.

    Article  PubMed  Google Scholar 

  46. Camilleri M, Malhi H, Acosta A. Gastrointestinal complications of obesity. Gastroenterology. 2017;152:1656–70.

    Article  PubMed  Google Scholar 

  47. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674–85.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sonne DP, van Nierop FS, Kulik W, Soeters MR, Vilsboll T, Knop FK. Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with Type 2 diabetes. J Clin Endocrinol Metab. 2016;101:3002–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ge H, Zhang J, Gong Y, Gupte J, Ye J, Weiszmann J, et al. Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions. J Biol Chem. 2014;289:30470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Our study was supported by the National Natural Science Foundation of China (Grant No. 82072676), the China Postdoctoral Science Foundation (Grant No. 2020M682190), Shandong University Multidisciplinary Research and Innovation Team of Young Scholars (Grant No. 2020QNQT002), Shandong Province Major Research and Design Program (Grant No. 2018GSF118169), Natural Science Foundation of Shandong Province (ZR2019MH008), Jinan City Science and Technology Development Program (Grant No. 201805017, 201805013), the Major Project of Shandong University Clinical Study (Grant No. 2020SDUCRCA018), the Project of Clinical New Techniques of Qilu Hospital affiliated to Shandong Universtiy, Clinical Research Innovation Fund Project (CXPJJH11800001-2018240) and Hengrui Hepatobiliary and Pancreatic Foundation (Grant No.Y-2017-144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongli Zhang or Yunfei Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Liu, H., Liu, Z. et al. FGF19 and FGFR4 promotes the progression of gallbladder carcinoma in an autocrine pathway dependent on GPBAR1-cAMP-EGR1 axis. Oncogene 40, 4941–4953 (2021). https://doi.org/10.1038/s41388-021-01850-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01850-1

  • Springer Nature Limited

This article is cited by

Navigation