Skip to main content

Advertisement

Log in

C3a elicits unique migratory responses in immature low-density neutrophils

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Neutrophils represent the immune system’s first line of defense and are rapidly recruited into inflamed tissue. In cancer associated inflammation, phenotypic heterogeneity has been ascribed to this cell type, whereby neutrophils can manifest anti- or pro-metastatic functions depending on the cellular/micro-environmental context. Here, we demonstrate that pro-metastatic immature low-density neutrophils (iLDNs) more efficiently accumulate in the livers of mice bearing metastatic lesions compared with anti-metastatic mature high-density neutrophils (HDNs). Transcriptomic analyses reveal enrichment of a migration signature in iLDNs relative to HDNs. We find that conditioned media derived from liver-metastatic breast cancer cells, but not lung-metastatic variants, specifically induces chemotaxis of iLDNs and not HDNs. Chemotactic responses are due to increased surface expression of C3aR in iLDNs relative to HDNs. In addition, we detect elevated secretion of cancer-cell derived C3a from liver-metastatic versus lung-metastatic breast cancer cells. Perturbation of C3a/C3aR signaling axis with either a small molecule inhibitor, SB290157, or reducing the levels of secreted C3a from liver-metastatic breast cancer cells by short hairpin RNAs, can abrogate the chemotactic response of iLDNs both in vitro and in vivo, respectively. Together, these data reveal novel mechanisms through which iLDNs prefentially accumulate in liver tissue harboring metastases in response to tumor-derived C3a secreted from the liver-aggressive 4T1 breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: iLDNs efficiently infiltrate metastasis bearing livers when compared with HDNs.
Fig. 2: iLDNs preferentially migrate toward conditioned media generated from liver-aggressive 4T1 breast cancer cells (2776).
Fig. 3: C3a–C3aR axis is engaged in iLDNs migrating toward conditioned media derived from liver-aggressive 4T1 breast cancer cells (2776).
Fig. 4: Inhibition of C3aR blocks the preferential migration of iLDNs toward conditioned media derived from liver-aggressive 4T1 breast cancer cells (2776).

Similar content being viewed by others

Data availability

The accession number for the RNA-sequencing data is GEO: GSE123669. All informatics analyses were performed with R, an open source software environment for statistical computer and graphics. The software is available for download at https://cran.r-project.org/. Chemotaxis analyses were performed in Matlab (Mathwork). Further details are presented in the supplementary data.

References

  1. Sadik CD, Kim ND, Luster AD. Neutrophils cascading their way to inflammation. Trends Immunol. 2011;32:452–60.

  2. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159.

    Article  CAS  PubMed  Google Scholar 

  3. Daffern PJ, Pfeifer PH, Ember JA, Hugli TE. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J Exp Med. 1995;181:2119.

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann K, Henz BM, Krüger-Krasagakes S, Köhl J, Burger R, Guhl S, et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood. 1997;89:2863.

    Article  CAS  PubMed  Google Scholar 

  5. Hutamekalin P, Takeda K, Tani M, Tsuga Y, Ogawa N, Mizutani N, et al. Effect of the C3a-receptor antagonist SB 290157 on anti-OVA polyclonal antibody-induced arthritis. J Pharm Sci. 2010;112:56–63.

    Article  CAS  Google Scholar 

  6. Wu MC, Brennan FH, Lynch JP, Mantovani S, Phipps S, Wetsel RA, et al. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc Natl Acad Sci USA. 2013;110:9439–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mishalian I, Granot Z, Fridlender ZG. The diversity of circulating neutrophils in cancer. Immunobiology. 2017;222:82–8.

    Article  CAS  PubMed  Google Scholar 

  8. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10:562–73.

    Article  CAS  PubMed  Google Scholar 

  10. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 2011;89:311–7.

    Article  CAS  PubMed  Google Scholar 

  11. Guglietta S, Chiavelli A, Zagato E, Krieg C, Gandini S, Ravenda PS, et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun. 2016;7:11037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu BE, Tabaries S, Johnson RM, Andrzejewski S, Senecal J, Lehuede C, et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. 2019;27:3902–e6.

    Article  CAS  PubMed  Google Scholar 

  13. Tabariès S, Ouellet V, Hsu BE, Annis MG, Rose AA, Meunier L, et al. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res. 2015;17:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nelson RD, Quie PG, Simmons RL. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol. 1975;115:1650–6.

    CAS  PubMed  Google Scholar 

  15. Palmblad J, Malmsten CL, Udén AM, Rådmark O, Engstedt L, Samuelsson B. Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood. 1981;58:658–61.

    Article  CAS  PubMed  Google Scholar 

  16. Krauss AH, Nieves AL, Spada CS, Woodward DF. Determination of leukotriene effects on human neutrophil chemotaxis in vitro by differential assessment of cell motility and polarity. J Leukoc Biol. 1994;55:201–8.

    Article  CAS  PubMed  Google Scholar 

  17. Foxman EF, Campbell JJ, Butcher EC. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J Cell Biol. 1997;139:1349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Foxman EF, Kunkel EJ, Butcher EC. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation. J Cell Biol. 1999;147:577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heit B, Tavener S, Raharjo E, Kubes P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J Cell Biol. 2002;159:91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heit B, Kubes P. Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci STKE. 2003;2003:Pl5.

    PubMed  Google Scholar 

  21. Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell. 2010;19:845–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Majumdar RA, Tameh T, Parent CA. Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biol. 2016;14:e1002336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saha P, Yeoh BS, Olvera RA, Xiao X, Singh V, Awasthi D, et al. Bacterial siderophores hijack neutrophil functions. J Immunol. 2017;198:4293–303.

    Article  CAS  PubMed  Google Scholar 

  24. Roy J, Mazzaferri J, Filep JG, Costantino S. A haptotaxis assay for neutrophils using optical patterning and a high-content approach. Sci Rep. 2017;7:2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subramanian BC, Moissoglu K, Parent CA. The LTB4-BLT1 axis regulates the polarized trafficking of chemoattractant GPCRs during neutrophil chemotaxis. J Cell Sci. 2018;131:18.

    Article  CAS  Google Scholar 

  26. Saunders CA, Majumdar R, Molina Y, Subramanian BC, Parent CA. Genetic manipulation of PLB-985 cells and quantification of chemotaxis using the underagarose assay. Methods Cell Biol. 2019;149:31–56.

    Article  PubMed  Google Scholar 

  27. Afonso PV, Janka-Junttila M, Lee YJ, McCann CP, Oliver CM, Aamer KA, et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev Cell. 2012;22:1079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talbot J, Bianchini FJ, Nascimento DC, Oliveira RD, Souto FO, Pinto LG, et al. CCR2 expression in neutrophils plays a critical role in their migration into the joints in rheumatoid arthritis. Arthritis Rheumatol. 2015;67:1751–9.

    Article  CAS  PubMed  Google Scholar 

  29. Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D, Wiese AV, et al. Monitoring C3aR expression using a floxed tdTomato-C3aR reporter knock-in mouse. J Immunol. 2017;199:688–706.

    Article  CAS  PubMed  Google Scholar 

  30. Mizutani N, Nabe T, Yoshino S. Complement C3a regulates late asthmatic response and airway hyperresponsiveness in mice. J Immunol. 2009;183:4039.

    Article  CAS  PubMed  Google Scholar 

  31. Lohman RJ, Hamidon JK, Reid RC, Rowley JA, Yau MK, Halili MA, et al. Exploiting a novel conformational switch to control innate immunity mediated by complement protein C3a. Nat Commun. 2017;8:351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ames RS, Lee D, Foley JJ, Jurewicz AJ, Tornetta MA, Bautsch W, et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol. 2001;166:6341–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371–5.

    Article  CAS  PubMed  Google Scholar 

  34. Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature. 2015;528:413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marder SR, Chenoweth DE, Goldstein IM, Perez HD. Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg. J Immunol. 1985;134:3325–31.

    CAS  PubMed  Google Scholar 

  36. Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G, et al. Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood. 2002;100:1869–77.

    CAS  PubMed  Google Scholar 

  37. Takabayashi T, Vannier E, Clark BD, Margolis NH, Dinarello CA, Burke JF, et al. A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis. J Immunol. 1996;156:3455–60.

    CAS  PubMed  Google Scholar 

  38. Lim H, Kim YU, Drouin SM, Mueller-Ortiz S, Yun K, Morschl E, et al. Negative regulation of pulmonary Th17 responses by C3a anaphylatoxin during allergic inflammation in mice. PLoS One. 2012;7:e52666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bautsch W, Hoymann HG, Zhang Q, Meier-Wiedenbach I, Raschke U, Ames RS, et al. Cutting edge: guinea pigs with a natural C3a-receptor defect exhibit decreased bronchoconstriction in allergic airway disease: evidence for an involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol. 2000;165:5401–5.

    Article  CAS  PubMed  Google Scholar 

  40. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K, et al. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol. 2012;188:1469–78.

    Article  CAS  PubMed  Google Scholar 

  41. Tabariès S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene. 2011;30:1318–28.

    Article  CAS  PubMed  Google Scholar 

  42. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform. 2009;10:161

    Article  CAS  Google Scholar 

  43. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.

    Article  PubMed  Google Scholar 

  44. Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci. 1996;179:298–310. 496.

    Article  CAS  Google Scholar 

  45. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6.

    Article  Google Scholar 

  46. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, et al. Robust single- particle tracking in live-cell time-lapse sequences. Nat Methods. 2008;5:695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mazzaferri J, Roy J, Lefrancois S, Costantino S. Adaptive settings for the nearest-neighbor particle tracking algorithm. Bioinformatics. 2015;31:1279–85.

    Article  PubMed  Google Scholar 

  48. Rink I, Rink J, Helmer D, Sachs D, Schmitz K. A haptotaxis assay for leukocytes based on surface-bound chemokine gradients. J Immunol. 2015;194:5549–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Goodman Cancer Research Centre histology core facility (McGill University) for routine histological services, the Cell Vision Core Facility (McGill University) for providing routine cell sorting service and the Genetics Perturbation Service for shRNAs (McGill University). We thank Anie Monast and Cynthia Lavoie for technical support and members of the Siegel laboratory for their thoughtful discussions and critical reading of the manuscript. This work was supported by an operating grant to P.M.S. from the Cancer Research Society and the Terry Fox Research Institute and Québec Breast Cancer Foundation (Grant #: 242122). S.C. acknowledges funding support from NSERC and Genome Canada and salary awarded from FRQS. J.D.S acknowledges funding support from AATS, MGH foundation and FRQS. BEH acknowledges support from the Charlotte and Leo Karassik Foundation PhD Fellowship and the Rolande and Marcel Gosselin Graduate Studentship. PMS is a McGill University William Dawson Scholar.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, BEH, JR, JDS, SC, PMS; Methodology, BEH, JR, JM, ST, JDS, SC, PMS; Validation, BEH, JR, ST, JM, RFR; Formal analysis, BEH, JR, ST, JM, RFR, LR, JDS, SC, PMS; Investigation, BEH, JR, ST; Resources, BEH, JR, JM, RFR, ST, MGA, IRW, JDS, SC, PMS; Data Curation, BEH, JR, JM, RFR, ST; Writing-Original Draft, BEH, JR, PMS; Writing-Review & Editing, BEH, JR, SC, PMS; Visualization, BEH, JR, LR, PMS; Supervision, ST, SC, PMS; Project administration, PMS; Funding acquisition, PMS.

Corresponding author

Correspondence to Peter M. Siegel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, B.E., Roy, J., Mouhanna, J. et al. C3a elicits unique migratory responses in immature low-density neutrophils. Oncogene 39, 2612–2623 (2020). https://doi.org/10.1038/s41388-020-1169-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1169-8

  • Springer Nature Limited

This article is cited by

Navigation