Skip to main content
Log in

Desuppression of TGF-β signaling via nuclear c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610, and -1048

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Protein-tyrosine kinases regulate a broad range of intracellular processes occurring primarily just beneath the plasma membrane. With the greatest care to prevent dephosphorylation, we have shown that nuclear tyrosine phosphorylation regulates global chromatin structural states. However, the roles for tyrosine phosphorylation in the nucleus are poorly understood. Here we identify transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), which suppresses transforming growth factor-β (TGF-β) signaling through the association with Smad2/3 transcription factor, as a new nuclear substrate of c-Abl tyrosine kinase. Replacement of the three tyrosine residues Tyr-524, -610, and -1048 with phenylalanine (3YF) inhibits c-Abl-mediated phosphorylation of TIF1γ and enhances TIF1γ’s association with Smad3. Importantly, knockdown-rescue experiments show that 3YF strengthens TIF1γ’s ability to suppress TGF-β signaling. Intriguingly, activation of c-Abl by epidermal growth factor (EGF) induces desuppression of TGF-β signaling via enhancing the tyrosine phosphorylation level of TIF1γ. TGF-β together with EGF synergistically provokes desuppressive responses of epithelial-to-mesenchymal transition through tyrosine phosphorylation of TIF1γ. These results suggest that nuclear c-Abl-mediated tyrosine phosphorylation of TIF1γ has a desuppressive role in TGF-β–Smad2/3 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000;69:373–98.

    Article  CAS  Google Scholar 

  2. Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 2009;21:140–6.

    Article  CAS  Google Scholar 

  3. Taagepera S, McDonald D, Loeb JE, Whitaker LL, McElroy AK, Wang JYJ, et al. Nuclear-cytoplasmic shuttling of c-Abl tyrosine kinase. Proc Natl Acad Sci USA. 1998;95:7457–62.

    Article  CAS  Google Scholar 

  4. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of Abl family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer. 2013;13:559–71.

    Article  CAS  Google Scholar 

  5. Khatri A, Wang J, Pendergast AM. Multifunctional Abl kinases in health disease. J Cell Sci. 2016;129:9–16.

    Article  CAS  Google Scholar 

  6. Wang JYJ. The capable Abl: what is its biological function? Mol Cell Biol. 2014;34:1188–97.

    Article  Google Scholar 

  7. Woodring PJ, Hunter T, Wang JYJ. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci. 2003;116:2613–26.

    Article  CAS  Google Scholar 

  8. Aoyama K, Fukumoto Y, Ishibashi K, Kubota S, Morinaga T, Horiike Y, et al. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation. Exp Cell Res. 2011;317:2874–903.

    Article  CAS  Google Scholar 

  9. Aoyama K, Yuki R, Horiike Y, Kubota S, Yamaguchi N, Morii M, et al. Formation of long winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase. Exp Cell Res. 2013;319:3251–68.

    Article  CAS  Google Scholar 

  10. Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y, et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature. 1997;387:516–9.

    Article  CAS  Google Scholar 

  11. Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, et al. Interaction between ATM protein c-Abl in response to DNA damage. Nature. 1997;387:520–3.

    Article  CAS  Google Scholar 

  12. Herquel B, Ouararhni K, Davidson I. The TIF1α-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression. Transcription. 2011;2:231–6.

    Article  Google Scholar 

  13. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  Google Scholar 

  14. Wang S, Wilkes MC, Leof EB, Hirschberg R. Noncanonical TGF-β pathways mTORC1 and Abl in renal interstitial fibrogenesis. Am J Physiol Ren Physiol. 2010;298:F142–F149.

    Article  CAS  Google Scholar 

  15. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massagué J. Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell. 2006;125:929–41.

    Article  CAS  Google Scholar 

  16. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell. 2003;112:845–57.

    Article  CAS  Google Scholar 

  17. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–3100.

    Article  CAS  Google Scholar 

  18. Sirvent A, Benistant C, Roche S. Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Biol Cell. 2008;100:617–31.

    Article  CAS  Google Scholar 

  19. Nasrollahi S, Pathak A. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices. Sci Rep. 2016;6:18831.

    Article  CAS  Google Scholar 

  20. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  Google Scholar 

  21. Sundqvist A, Zieba A, Vasilaki E, Herrera Hidalgo C, Söderberg O, Koinuma D, et al. Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Oncogene. 2013;32:3606–15.

    Article  CAS  Google Scholar 

  22. Bergeron JJ, Di Guglielmo GM, Dahan S, Dominiguez M, Posner BI. Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu Rev Biochem. 2016;85:573–97.

    Article  CAS  Google Scholar 

  23. Hunter T. The genesis of tyrosine phosphorylation. CSH Perspect Biol. 2014;6:a020644.

    Google Scholar 

  24. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005;6:56–68.

    Article  CAS  Google Scholar 

  25. Schlessinger J. Receptor tyrosine kinases: legacy of first two decades. CSH Perspect Biol. 2014;6:a008912.

    Google Scholar 

  26. Cans C, Mangano R, Barilá D, Neubauer G, Superti-Furga G. Nuclear tyrosine phosphorylation: the beginning of a map. Biochem Pharmacol. 2000;60:1203–15.

    Article  CAS  Google Scholar 

  27. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol. 2007;8:234–44.

    Article  CAS  Google Scholar 

  28. Yamaguchi N, Nakayama Y, Urakami T, Suzuki S, Nakamura T, Suda T, et al. Overexpression of the Csk homologous kinase (Chk tyrosine kinase) induces multinucleation: a possible role for chromosome-associated Chk in chromosome dynamics. J Cell Sci. 2001;114:1633–41.

    Google Scholar 

  29. Morii M, Kubota S, Honda T, Yuki R, Morinaga T, Kuga T, et al. Src acts as an effector for Ku70-dependent suppression of apoptosis through phosphorylation of Ku70 at Tyr-530. J Biol Chem. 2017;292:1648–65.

    Article  CAS  Google Scholar 

  30. Ishibashi K, Fukumoto Y, Hasegawa H, Abe K, Kubota S, Aoyama K, et al. Nuclear ErbB4 signaling through H3K9me3 is antagonized by EGFR-activated c-Src. J Cell Sci. 2013;126:625–37.

    Article  CAS  Google Scholar 

  31. Kubota S, Fukumoto Y, Aoyama K, Ishibashi K, Yuki R, Morinaga T, et al. Phosphorylation of KRAB-associated protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by nuclear tyrosine kinases inhibits the association of KAP1 and heterochromatin protein 1α (HP1α) with heterochromatin. J Biol Chem. 2013;288:17871–83.

    Article  CAS  Google Scholar 

  32. Kubota S, Fukumoto Y, Ishibashi K, Soeda S, Kubota S, Yuki R, et al. Activation of the pre-replication complex is blocked by mimosine through reactive oxygen species-activated Ataxia telangiectasia mutated (ATM) protein without DNA damage. J Biol Chem. 2015;290:10891–904.

    Article  CAS  Google Scholar 

  33. Takahashi A, Obata Y, Fukumoto Y, Nakayama Y, Kasahara K, Kuga T, et al. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization. Exp Cell Res. 2009;315:1117–41.

    Article  CAS  Google Scholar 

  34. Yamaguchi N, Shibazaki M, Yamada C, Anzai E, Morii M, Nakayama Y, et al. Tyrosine phosphorylation of the pioneer transcription factor FoxA1 promotes activation of estrogen signaling. J Cell Biochem. 2017;118:1453–61.

    Article  CAS  Google Scholar 

  35. Kuki K, Yamaguchi N, Iwasawa S, Takakura Y, Aoyama K, Yuki R, et al. Enhancement of TGF-β-induced Smad3 activity by c-Abl-mediated tyrosine phosphorylation of its coactivator SKI-interacting protein (SKIP). Biochem Biophys Res Commun. 2017;490:1045–51.

    Article  CAS  Google Scholar 

  36. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105:2640–53.

    Article  CAS  Google Scholar 

  37. Quéré R, Saint-Paul L, Carmignac V, Martin RZ, Chrétien ML, Largeot A, et al. Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells. Proc Natl Acad Sci USA. 2014;111:10592–7.

    Article  Google Scholar 

  38. Macias MJ, Martin-Malpartida P, Massagué J. Structural determinants of Smad function in TGF signaling. Trends Biochem Sci. 2015;40:296–308.

    Article  CAS  Google Scholar 

  39. Agricola E, Rall RA, Gaarenstroom T, Dupont S, Hill CS. Recruitment of TIF1γ to chromatin via its PHD finger bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol Cell. 2011;43:85–96.

    Article  CAS  Google Scholar 

  40. Plattner R, Kadlec L, DeMali KA, Kazlauskas A, Pendergast AM. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 1999;13:2400–11.

    Article  CAS  Google Scholar 

  41. Grände M, Franzen A, Karlsson JO, Ericson LE, Heldin NE, Nilsson M. Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci. 2002;115:4227–36.

    Article  Google Scholar 

  42. He J, Bazan HE. Epidermal growth factor synergism with TGF-β1 via PI-3 kinase activity in corneal keratocyte differentiation. Invest Ophthalmol Vis Sci. 2008;49:2936–45.

    Article  Google Scholar 

  43. Krainock M, Toubat O, Danopoulos S, Beckham A, Warburton D, Kim R. Epicardial epithelial-to-mesenchymal transition in heart development and disease. J Clin Med. 2016;19:E27.

    Article  Google Scholar 

  44. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol. 2001;234:204–15.

    Article  CAS  Google Scholar 

  45. Jia M, Souchelnytstkyi S. Comments on the cross-talk of TGFβ and EGF in cancer. Exp Oncol. 2011;33:170–3.

    CAS  PubMed  Google Scholar 

  46. Kretzschmar M, Doody J, Timokhina I, Massagué J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev. 1999;13:804–16.

    Article  CAS  Google Scholar 

  47. Docherty NG, O’Sullivan OE, Healy DA, Murphy M, O’Neill AJ, Fitzpatrick JM, et al. TGF-β1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation. Am J Physiol Ren Physiol. 2006;290:F1202–F1212.

    Article  CAS  Google Scholar 

  48. Saha D, Datta PK, Sheng H, Morrow JD, Wada M, Moses H, et al. Synergistic induction of cyclooxygenase-2 by transforming growth factor-β1 and epidermal growth factor inhibits apoptosis in epithelial cells. Neoplasia. 1999;1:508–17.

    Article  CAS  Google Scholar 

  49. Uttamsingh S, Bao X, Nguyen KT, Bhanot M, Gong J, Chan JLK, et al. Synergistic effect between EGF and TGF-β1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene. 2008;27:2626–34.

    Article  CAS  Google Scholar 

  50. Fukumoto Y, Obata Y, Ishibashi K, Tamura N, Kikuchi I, Aoyama K, et al. Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified long shelf-life polyethylenimine. Cytotechnology. 2010;62:73–82.

    Article  CAS  Google Scholar 

  51. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–4.

    Article  CAS  Google Scholar 

  52. Aoyama K, Yamaguchi N, Yuki R, Morii M, Kubota S, Hirata K, et al. c-Abl induces stabilization of histone deacetylase 1 (HDAC1) in a kinase activity-dependent manner. Cell Biol Int. 2015;39:446–56.

    Article  CAS  Google Scholar 

  53. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H. et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS One. 2014;9:e116048

    Article  Google Scholar 

  54. Kasahara K, Nakayama Y, Sato I, Ikeda K, Hoshino M, Endo T, et al. Role of Src-family kinases in formation and trafficking of macropinosomes. J Cell Physiol. 2007;211:220–32.

    Article  CAS  Google Scholar 

  55. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, et al. FAM/USP9x a deubiquitinating enzyme essential for TGFβ signaling controls Smad4 monoubiquitination. Cell. 2009;136:123–35.

    Article  CAS  Google Scholar 

  56. Obata Y, Fukumoto Y, Nakayama Y, Kuga T, Dohmae N, Yamaguchi N. The Lyn kinase C-lobe mediates Golgi export of Lyn through conformation-dependent ACSL3 association. J Cell Sci. 2010;123:2649–62.

    Article  CAS  Google Scholar 

  57. Morii M, Fukumoto Y, Kubota S, Yamaguchi N, Nakayama Y, Yamaguchi N. Imatinib inhibits inactivation of the ATM/ATR signaling pathway and recovery from Adriamycin/doxorubicin-induced DNA damage checkpoint arrest. Cell Biol Int. 2015;39:923–32.

    Article  CAS  Google Scholar 

  58. Yuki R, Aoyama K, Kubota S, Yamaguchi N, Kubota S, Hasegawa H, et al. Overexpression of Zinc-finger protein 777 (ZNF777) inhibits proliferation at low cell density through down-regulation of FAM129A. J Cell Biochem. 2015;116:954–68.

    Article  CAS  Google Scholar 

  59. Tamura T, Kunimatsu T, Yee ST, Igarashi O, Utsuyama M, Tanaka S, et al. Molecular mechanism of the impairment in activation signal transduction in CD4 T cells from old mice. Int Immunol. 2000;12:1205–15.

    Article  CAS  Google Scholar 

  60. Sato I, Obata Y, Kasahara K, Nakayama Y, Fukumoto Y, Yamasaki T, et al. Differential trafficking of Src, Lyn, Yes, and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci. 2009;122:965–75.

    Article  CAS  Google Scholar 

  61. Fattet L, Ay AS, Bonneau B, Jallades L, Mikaelian I, Treilleux I, et al. TIF1γ requires sumoylation to exert its repressive activity on TGFβ signaling. J Cell Sci. 2013;126:3713–23.

    Article  CAS  Google Scholar 

  62. Soeda S, Nakayama Y, Honda T, Aoki A, Tamura N, Abe K. et al. v-Src causes delocalization of Mklp1,Aurora B, and INCENP from the spindle midzone during cytokinesis failure. Exp Cell Res. 2013;319:1382–97.

    Article  CAS  Google Scholar 

  63. Honda T, Morii M, Nakayama Y, Suzuki K, Yamaguchi N, Yamaguchi N. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling. Sci Rep. 2018;8:1063.

    Article  Google Scholar 

  64. Yamaguchi N, Yuki R, Kubota S, Aoyama K, Kuga T, Hashimoto Y, et al. c-Abl-mediated tyrosine phosphorylation of JunB is required for Adriamycin-induced expression of p21. Biochem J. 2015;471:67–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Eli Canaani (Weizmann Institute of Science), Dr. Hiroyuki Miyoshi (RIKEN BRC, Tsukuba), Dr. Toshiki Tamura (National Institute of Infectious Diseases, Tokyo), and Dr. Masatoshi Tagawa (Chiba Cancer Center Research Institute, Chiba) for their materials. This work was supported in part by grants-in-aid for Scientific Research 15K07922 (to Naoto Y) and 16K08227 (to Noritaka Y), Global COE Program, and Program for Leading Graduate School (LGS) from the MEXT. KA and SK were G-COE Research Assistants. TH and M.M. were LGS Research Assistants. SK, TH, and MM are JSPS Research Fellows.

Author contributions

RY and Naoto Y conceived the study, designed the experiments, and wrote the manuscript. RY, T Tatewaki, Noritaka Y, and TH performed experiments. KA, SK, TK, and T Tomonaga performed phosphoproteomic analysis. RY, T Tatewaki, KA, TH, SK, MM, IM, and Naoto Y analyzed and discussed the data. All authors approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Yamaguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuki, R., Tatewaki, T., Yamaguchi, N. et al. Desuppression of TGF-β signaling via nuclear c-Abl-mediated phosphorylation of TIF1γ/TRIM33 at Tyr-524, -610, and -1048. Oncogene 38, 637–655 (2019). https://doi.org/10.1038/s41388-018-0481-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0481-z

  • Springer Nature Limited

This article is cited by

Navigation