Skip to main content
Log in

Microbial short-chain fatty acids regulate drug seeking and transcriptional control in a model of cocaine seeking

  • Article
  • Published:
Neuropsychopharmacology Submit manuscript

Abstract

Cocaine use disorder represents a public health crisis with no FDA-approved medications for its treatment. A growing body of research has detailed the important connections between the brain and the resident population of bacteria in the gut, the gut microbiome, in psychiatric disease models. Acute depletion of gut bacteria results in enhanced reward in a mouse cocaine place preference model, and repletion of bacterially-derived short-chain fatty acid (SCFA) metabolites reverses this effect. However, the role of the gut microbiome and its metabolites in modulating cocaine-seeking behavior after prolonged abstinence is unknown. Given that relapse prevention is the most clinically challenging issue in treating substance use disorders, studies examining the effects of microbiome manipulations in relapse-relevant models are critical. Here, male Sprague-Dawley rats received either untreated water or antibiotics to deplete the gut microbiome and its metabolites. Rats were trained to self-administer cocaine and subjected to either within-session threshold testing to evaluate motivation for cocaine or 21 days of abstinence followed by a cue-induced cocaine-seeking task to model relapse behavior. Microbiome depletion did not affect cocaine acquisition on an fixed-ratio 1 schedule. However, microbiome-depleted rats exhibited significantly enhanced motivation for low dose cocaine on a within-session threshold task. Similarly, microbiome depletion increased cue-induced cocaine-seeking following prolonged abstinence and altered transcriptional regulation in the nucleus accumbens. In the absence of a normal microbiome, repletion of bacterially-derived SCFA metabolites reversed the behavioral and transcriptional changes associated with microbiome depletion. These findings suggest that gut bacteria, via their metabolites, are key regulators of drug-seeking behaviors, positioning the microbiome as a potential translational research target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Abx effects on cocaine taking behaviors.
Fig. 2: Abx increases on cocaine-seeking after abstinence.
Fig. 3: SCFA repletion reverses effects of microbiome depletion on drug-seeking.
Fig. 4: Effects of Abx and SCFA on microbiome composition and function.
Fig. 5: RNA sequencing analysis of NAc after drug seeking.

Similar content being viewed by others

References

  1. Substance Abuse and Mental Health Services Administration. Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health. in Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health (ed. U.S. Department of Health and Human Services (HHS), O. of the S. G.) chap. 6 (HHS, 2016). https://www.ncbi.nlm.nih.gov/books/NBK424857/pdf/Bookshelf_NBK424857.pd.

  2. Mews P, Calipari ES. Cross-talk between the epigenome and neural circuits in drug addiction. Prog Brain Res. 2017;235:19–63.

  3. Walker DM, Nestler EJ. Neuroepigenetics and addiction. Handb Clin Neurol. 2018;148:747–65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci. 2018. https://doi.org/10.1111/ejn.14143.

  5. Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. Int Rev Neurobiol. 2020. https://doi.org/10.1016/bs.irn.2020.09.005.

  6. Dinan TG, Cryan JF. Microbes Immunity and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology. 2017;42:178–92.

  7. Dinan TG, Cryan JF. Brain-Gut-Microbiota Axis and Mental Health. https://doi.org/10.1097/PSY.0000000000000519.

  8. Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiat. 2017;81:411–23.

  9. Hsiao EY, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meckel KR, Kiraly DD. A potential role for the gut microbiome in substance use disorders. Psychopharmacology. 2019;236:1513–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiraly DD, et al. Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep. 2016;6:1–12.

    Article  Google Scholar 

  12. Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics. 2018;15:36–59.

  13. De Palma G, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun. 2015;6:7735.

    Article  PubMed  Google Scholar 

  14. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res. 2015;287:59–72.

  15. Lucerne KE, Osman A, Meckel KR, Kiraly DD. Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology. 2021;192:108598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofford RS, et al. Alterations in microbiome composition and metabolic byproducts drive behavioral and transcriptional responses to morphine. Neuropsychopharmacology. 2021. https://doi.org/10.1038/s41386-021-01043-0.

  17. Hofford RS, et al. Changes in gut microbiome composition drive fentanyl intake and striatal proteomic changes. Preprint at 2022. https://doi.org/10.1101/2022.11.30.518531.

  18. García-Cabrerizo R, Barros-Santos T, Campos D, Cryan JF. The gut microbiota alone and in combination with a social stimulus regulates cocaine reward in the mouse. Brain Behav Immun. 2023;107:286–91.

    Article  PubMed  Google Scholar 

  19. Cuesta S, Burdisso P, Segev A, Kourrich S, Sperandio V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe. 2022;30:1615–29.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang F, et al. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep. 2018;8:3596.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, et al. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proc Natl Acad Sci USA. 2019;116:13523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Res. 2015;277:32–48.

    Article  Google Scholar 

  23. Visconti A, et al. Interplay between the human gut microbiome and host metabolism. Nat Commun. 2019;10:1–10.

    Article  CAS  Google Scholar 

  24. Vojinovic D, et al. Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nat Commun. 2019;10:1–7.

    Article  Google Scholar 

  25. Vuong HE, et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature. 2020;586:281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun J, Chang EB. Exploring gut microbes in human health and disease: Pushing the envelope. Genes Dis. 2014;1:132–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–45.

    Article  CAS  PubMed  Google Scholar 

  28. Sun J, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett. 2016;618:159–66.

    Article  CAS  PubMed  Google Scholar 

  29. Erny D, et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021;33:2260–76.e7.

    Article  CAS  PubMed  Google Scholar 

  30. Erny D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thion MS, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172:500–16.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kang M, et al. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci Rep. 2017;7:1–17.

    Google Scholar 

  33. Lee K, et al. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology. 2018;1. https://doi.org/10.1038/s41386-018-0211-9.

  34. Li X, Venniro M, Shaham Y. Translational Research on Incubation of Cocaine Craving. JAMA Psychiat. 2016;73:1115–6.

    Article  Google Scholar 

  35. Dong Y, Taylor JR, Wolf ME, Shaham Y. Circuit and Synaptic Plasticity Mechanisms of Drug Relapse. J Neurosci. 2017;37:10867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu L, Grimm JW, Dempsey J, Shaham Y. Cocaine seeking over extended withdrawal periods in rats: different time courses of responding induced by cocaine cues versus cocaine priming over the first 6 months. Psychopharmacology. 2004;176:101–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pickens CL, et al. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011;34:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parvaz MA, Moeller SJ, Goldstein RZ. Incubation of Cue-Induced Craving in Adults Addicted to Cocaine Measured by Electroencephalography. JAMA Psychiat. 2016;73:1127–34.

    Article  Google Scholar 

  39. Bercik P, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.

    Article  CAS  PubMed  Google Scholar 

  40. Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.

    Article  CAS  PubMed  Google Scholar 

  41. Braniste V, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Calipari ES, et al. Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine. Nat Commun. 2018;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Siciliano CA, Jones SR. Cocaine potency at the dopamine transporter tracks discrete motivational states during cocaine self-administration. Neuropsychopharmacology. 2017;42:1893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oleson EB, Roberts DCS. Behavioral economic assessment of price and cocaine consumption following self-administration histories that produce escalation of either final ratios or intake. Neuropsychopharmacology. 2009;34:796–804.

    Article  PubMed  Google Scholar 

  45. Zito KA, Vickers G, Roberts DCS. Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol, Biochem Behav. 1985;23:1029–36.

    Article  CAS  PubMed  Google Scholar 

  46. Salgado S, Kaplitt MG. The nucleus accumbens: A comprehensive review. Stereotact Funct Neurosurg. 2015;93:75–93.

  47. Chu C, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoban AE, et al. The microbiome regulates amygdala-dependent fear recall. Mol Psychiat. 2018;23:1134–44.

    Article  CAS  Google Scholar 

  49. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sens JP, Hofford RS, Kiraly DD. Effect of germ-free status on transcriptional profiles in the nucleus accumbens and transcriptomic response to chronic morphine. Mol Cell Neurosci. 2023;103874. https://doi.org/10.1016/j.mcn.2023.103874.

  51. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article  Google Scholar 

  52. Lee K, et al. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology. 2018;43:2606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoban AE, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016;6:e774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stilling RM, et al. Microbes & neurodevelopment-Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun 2015;50:209–20.

    Article  PubMed  Google Scholar 

  55. Simpson S, et al. Depletion of the Microbiome Alters the Recruitment of Neuronal Ensembles of Oxycodone Intoxication and Withdrawal. eNeuro. 2020;7:ENEURO.0312-19.2020.

  56. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–78.

    Article  PubMed  Google Scholar 

  57. Frost G, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  CAS  PubMed  Google Scholar 

  58. Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008;19:587–93.

    Article  CAS  PubMed  Google Scholar 

  59. Mews P, et al. Alcohol metabolism contributes to brain histone acetylation. Nature. 2019;574:717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mews P, et al. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;546:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Macfabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012;23.

  62. MacFabe DF, et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res. 2007;176:149–69.

    Article  CAS  PubMed  Google Scholar 

  63. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells-possible relevance to autism spectrum disorders. PLoS One. 2014;9:e103740.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rabelo FLA, et al. Inhibition of ERK1/2 and CREB phosphorylation by caspase-dependent mechanism enhances apoptosis in a fibrosarcoma cell line treated with butyrate. Biochem Biophys Res Commun. 2003;303:968–72.

    Article  CAS  PubMed  Google Scholar 

  65. Mally P, et al. Stereospecific regulation of tyrosine hydroxylase and proenkephalin genes by short-chain fatty acids in rat PC12 cells. Pediatr Res. 2004;55:847–54.

    Article  CAS  PubMed  Google Scholar 

  66. Parab S, Nankova BB, La Gamma EF. Differential regulation of the tyrosine hydroxylase and enkephalin neuropeptide transmitter genes in rat PC12 cells by short chain fatty acids: concentration-dependent effects on transcription and RNA stability. Brain Res. 2007;1132:42–50.

    Article  CAS  PubMed  Google Scholar 

  67. Shah P, Nankova BB, Parab S, La Gamma EF. Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res. 2006;1107:13–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NIDA Drug Supply for provision of cocaine hydrochloride. We would like to thank Alexia Seba-Robles for assistance with animal care. Figures made with BioRender with full permission to publish.

Funding

Funds for this research were provided by NIH grants DA051551 to DDK, DA044308 to DDK, DA050906 to RSH DA053105 to EGP & NS124187 to KRM. As well as a NARSAD Young Investigator award to RSH.

Author information

Authors and Affiliations

Authors

Contributions

DDK, ESC, and KRM designed the experiments. KRM, AG, EGP, ESC, RSH, and DDK performed experiments. KRM, SSS, AG, JSP, MZL, OG, ESC, RSH & DDK analyzed data. KRM & DDK wrote the manuscript. All authors provided critical edits and feedback of the finalized manuscript.

Corresponding author

Correspondence to Drew D. Kiraly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meckel, K.R., Simpson, S.S., Godino, A. et al. Microbial short-chain fatty acids regulate drug seeking and transcriptional control in a model of cocaine seeking. Neuropsychopharmacol. 49, 386–395 (2024). https://doi.org/10.1038/s41386-023-01661-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01661-w

  • Springer Nature Switzerland AG

Navigation