Skip to main content

Advertisement

Log in

Pathways link environmental and genetic factors with structural brain networks and psychopathology in youth

  • Article
  • Published:
Neuropsychopharmacology Submit manuscript

A Correction to this article was published on 25 July 2023

This article has been updated

Abstract

Adolescence is a period of significant brain development and maturation, and it is a time when many mental health problems first emerge. This study aimed to explore a comprehensive map that describes possible pathways from genetic and environmental risks to structural brain organization and psychopathology in adolescents. We included 32 environmental items on developmental adversity, maternal substance use, parental psychopathology, socioeconomic status (SES), school and family environment; 10 child psychopathological scales; polygenic risk scores (PRS) for 10 psychiatric disorders, total problems, and cognitive ability; and structural brain networks in the Adolescent Brain Cognitive Development study (ABCD, n = 9168). Structural equation modeling found two pathways linking SES, brain, and psychopathology. Lower SES was found to be associated with lower structural connectivity in the posterior default mode network and greater salience structural connectivity, and with more severe psychosis and internalizing in youth (p < 0.001). Prematurity and birth weight were associated with early-developed sensorimotor and subcortical networks (p < 0.001). Increased parental psychopathology, decreased SES and school engagement was related to elevated family conflict, psychosis, and externalizing behaviors in youth (p < 0.001). Increased maternal substance use predicted increased developmental adversity, internalizing, and psychosis (p < 0.001). But, polygenic risks for psychiatric disorders had moderate effects on brain structural connectivity and psychopathology in youth. These findings suggest that a range of genetic and environmental factors can influence brain structural organization and psychopathology during adolescence, and that addressing these risk factors may be important for promoting positive mental health outcomes in young people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Environment-wide associations with brain structural connectivities.
Fig. 2: PRS-wide associations with brain structural connectivities.
Fig. 3: Child psychopathology-wide associations with brain structural connectivities.
Fig. 4: Heatmap among the environmental factors, polygenic risk scores, and child transdiagnostic dimensions of psychopathology.
Fig. 5: Pathways link environmental factors and polygenic risk scores with the brain structural connectivity and transdiagnostic dimensions of psychopathology in youth.

Similar content being viewed by others

Change history

References

  1. Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2022;27:281–95.

    Article  CAS  PubMed  Google Scholar 

  2. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al. Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA. 2007;104:13507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grayson DS, Fair DA. Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. Neuroimage. 2017;160:15–31.

    Article  PubMed  Google Scholar 

  4. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex. 1996;6:551–60.

    Article  CAS  PubMed  Google Scholar 

  5. Sowell ER, Trauner DA, Gamst A, Jernigan TL. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol. 2002;44:4–16.

    Article  PubMed  Google Scholar 

  6. Seehaus A, Roebroeck A, Bastiani M, Fonseca L, Bratzke H, Lori N, et al. Histological validation of high-resolution DTI in human post mortem tissue. Front Neuroanat. 2015;9:98.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004;1:351–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Asato MR, Terwilliger R, Woo J, Luna B. White matter development in adolescence: a DTI study. Cereb Cortex. 2010;20:2122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kipping JA, Tuan TA, Fortier MV, Qiu A. Asynchronous development of cerebellar, cerebello-cortical, and cortico-cortical functional networks in infancy, childhood, and adulthood. Cereb Cortex. 2017;27:5170–84.

    PubMed  Google Scholar 

  10. Qiu A, Rifkin-Graboi A, Zhong J, Phua DY, Lai YK, Meaney MJ. Birth weight and gestation influence striatal morphology and motor response in normal six-year-old boys. Neuroimage 2012;59:1065–70.

    Article  PubMed  Google Scholar 

  11. Cheong JL, Anderson P, Roberts G, Duff J, Doyle LW, Victorian Infant Collaborative Study G. Postnatal corticosteroids and neurodevelopmental outcomes in extremely low birthweight or extremely preterm infants: 15-year experience in Victoria, Australia. Arch Dis Child Fetal Neonatal Ed. 2013;98:F32–6.

    Article  PubMed  Google Scholar 

  12. Thompson DK, Matthews LG, Alexander B, Lee KJ, Kelly CE, Adamson CL, et al. Tracking regional brain growth up to age 13 in children born term and very preterm. Nat Commun. 2020;11:696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Lee ZX, White T, Qiu A. Parental and social factors in relation to child psychopathology, behavior, and cognitive function. Transl Psychiatry. 2020;10:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Wong TY, Broekman BFP, Chong YS, Shek LP, Gluckman PD, et al. Maternal adverse childhood experience and depression in relation with brain network development and behaviors in children: a longitudinal study. Cereb Cortex. 2021;31:4233–44.

    Article  PubMed  Google Scholar 

  15. Wen DJ, Poh JS, Ni SN, Chong YS, Chen H, Kwek K, et al. Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl Psychiatry. 2017;7:e1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rifkin-Graboi A, Bai J, Chen H, Hameed WB, Sim LW, Tint MT, et al. Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biol Psychiatry. 2013;74:837–44.

    Article  PubMed  Google Scholar 

  17. Qiu A, Anh TT, Li Y, Chen H, Rifkin-Graboi A, Broekman BF, et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl Psychiatry. 2015;5:e508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hur JW, Choi SH, Yun JY, Chon MW, Kwon JS. Parental socioeconomic status and prognosis in individuals with ultra-high risk for psychosis: A 2-year follow-up study. Schizophr Res. 2015;168:56–61.

    Article  PubMed  Google Scholar 

  19. Anton MT, Jones DJ, Youngstrom EA. Socioeconomic status, parenting, and externalizing problems in African American single-mother homes: a person-oriented approach. J Fam Psychol. 2015;29:405–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tooley UA, Mackey AP, Ciric R, Ruparel K, Moore TM, Gur RC, et al. Associations between neighborhood ses and functional brain network development. Cereb Cortex. 2020;30:1–19.

    Article  PubMed  Google Scholar 

  21. Sripada C, Angstadt M, Taxali A, Clark DA, Greathouse T, Rutherford S, et al. Brain-wide functional connectivity patterns support general cognitive ability and mediate effects of socioeconomic status in youth. Transl Psychiatry. 2021;11:571.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rakesh D, Cropley V, Zalesky A, Vijayakumar N, Allen NB, Whittle S. Neighborhood disadvantage and longitudinal brain-predicted-age trajectory during adolescence. Dev Cogn Neurosci. 2021;51:101002.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gong W, Rolls ET, Du J, Feng J, Cheng W. Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study. Nat Commun. 2021;12:3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garavan H, Bartsch H, Conway K, Decastro A, Goldstein RZ, Heeringa S, et al. Recruiting the ABCD sample: Design considerations and procedures. Dev Cogn Neurosci. 2018;32:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lubke GH, Hottenga JJ, Walters R, Laurin C, de Geus EJ, Willemsen G, et al. Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms. Biol Psychiatry. 2012;72:707–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511.

    Article  CAS  PubMed  Google Scholar 

  27. MacNeill LA, Allen NB, Poleon RB, Vargas T, Osborne KJ, Damme KSF, et al. Translating RDoC to real-world impact in developmental psychopathology: a neurodevelopmental framework for application of mental health risk calculators. Dev Psychopathol. 2021;33:1665–84.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barch DM, Albaugh MD, Avenevoli S, Chang L, Clark DB, Glantz MD, et al. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Dev Cogn Neurosci. 2018;32:55–66.

    Article  PubMed  Google Scholar 

  29. Clark DB, Fisher CB, Bookheimer S, Brown SA, Evans JH, Hopfer C, et al. Biomedical ethics and clinical oversight in multisite observational neuroimaging studies with children and adolescents: The ABCD experience. Dev Cogn Neurosci. 2018;32:143–54.

    Article  PubMed  Google Scholar 

  30. Karcher NR, Barch DM. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 2021;46:131–42.

    Article  PubMed  Google Scholar 

  31. Bogner JA, Whiteneck GG, MacDonald J, Juengst SB, Brown AW, Philippus AM, et al. Test-retest reliability of traumatic brain injury outcome measures: a traumatic brain injury model systems study. J Head Trauma Rehabil. 2017;32:E1–E16.

    Article  PubMed  Google Scholar 

  32. Achenbach TM. International findings with the Achenbach System of Empirically Based Assessment (ASEBA): applications to clinical services, research, and training. Child Adolesc Psychiatry Ment Health. 2019;13:30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rice JP, Reich T, Bucholz KK, Neuman RJ, Fishman R, Rochberg N, et al. Comparison of direct interview and family history diagnoses of alcohol dependence. Alcohol Clin Exp Res. 1995;19:1018–23.

    Article  CAS  PubMed  Google Scholar 

  34. Hamilton CM, Strader LC, Pratt JG, Maiese D, Hendershot T, Kwok RK, et al. The PhenX Toolkit: get the most from your measures. Am J Epidemiol. 2011;174:253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kind AJ, Jencks S, Brock J, Yu M, Bartels C, Ehlenbach W, et al. Neighborhood socioeconomic disadvantage and 30-day rehospitalization: a retrospective cohort study. Ann Intern Med. 2014;161:765–74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Echeverria SE, Diez-Roux AV, Link BG. Reliability of self-reported neighborhood characteristics. J Urban Health. 2004;81:682–701.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stover PJ, Harlan WR, Hammond JA, Hendershot T, Hamilton CM. PhenX: a toolkit for interdisciplinary genetics research. Curr Opin Lipido. 2010;21:136–40.

    Article  CAS  Google Scholar 

  38. Chilcoat HD, Anthony JC. Impact of parent monitoring on initiation of drug use through late childhood. J Am Acad Child Adolesc Psychiatry. 1996;35:91–100.

    Article  CAS  PubMed  Google Scholar 

  39. Schaefer ES. A configurational analysis of children’s reports of parent behavior. J Consult Psychol. 1965;29:552–7.

    Article  CAS  PubMed  Google Scholar 

  40. Moos RH, Moos BS Family Environment Scale manual. Consulting Psychologists Press: Palo Alto, CA; 1986.

  41. Goodman R, Meltzer H, Bailey V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Eur Child Adolesc Psychiatry. 1998;7:125–30.

    Article  CAS  PubMed  Google Scholar 

  42. Youngstrom EA, Frazier TW, Demeter C, Calabrese JR, Findling RL. Developing a 10-item mania scale from the Parent General Behavior Inventory for children and adolescents. J Clin Psychiatry. 2008;69:831–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Loewy RL, Therman S, Manninen M, Huttunen MO, Cannon TD. Prodromal psychosis screening in adolescent psychiatry clinics. Early Inter Psychiatry. 2012;6:69–75.

    Article  Google Scholar 

  44. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  CAS  PubMed  Google Scholar 

  46. Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;142:394–406.

    Article  PubMed  Google Scholar 

  47. Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement. Neuroimage. 2017;152:450–66.

    Article  PubMed  Google Scholar 

  48. Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556–72.

    Article  PubMed  Google Scholar 

  49. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.

    Article  PubMed  Google Scholar 

  50. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–41.

    Article  PubMed  Google Scholar 

  52. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.

    Article  CAS  PubMed  Google Scholar 

  53. Du J, Hosseinbor AP, Chung MK, Bendlin BB, Suryawanshi G, Alexander AL, et al. Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis. Med Image Anal. 2014;18:1002–14.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Du J, Goh A, Qiu A. Diffeomorphic metric mapping of high angular resolution diffusion imaging based on Riemannian structure of orientation distribution functions. IEEE Trans Med Imaging. 2012;31:1021–33.

    Article  PubMed  Google Scholar 

  55. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 2008;40:570–82.

    Article  PubMed  Google Scholar 

  56. Shen X, Finn ES, Scheinost D, Rosenberg MD, Chun MM, Papademetris X, et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc. 2017;12:506–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baum GL, Cui Z, Roalf DR, Ciric R, Betzel RF, Larsen B, et al. Development of structure–function coupling in human brain networks during youth. Proc Natl Acad Sci USA. 2020;117:771–78.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu J, Qiu A. Interindividual variability in functional connectivity discovers differential development of cognition and transdiagnostic dimensions of psychopathology in youth. Neuroimage. 2022;260:119482.

    Article  PubMed  Google Scholar 

  59. Baurley JW, Edlund CK, Pardamean CI, Conti DV, Bergen AW. Smokescreen: a targeted genotyping array for addiction research. BMC Genomics. 2016;17:145.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krishnan K, Wang BS, Lu J, Wang L, Maffei A, Cang J, et al. MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc Natl Acad Sci USA. 2015;112:E4782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peyrot WJ, Milaneschi Y, Abdellaoui A, Sullivan PF, Hottenga JJ, Boomsma DI, et al. Effect of polygenic risk scores on depression in childhood trauma. Br J Psychiatry. 2014;205:113–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Holmes AJ, Lee PH, Hollinshead MO, Bakst L, Roffman JL, Smoller JW, et al. Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci. 2012;32:18087–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748–52.

    Article  CAS  PubMed  Google Scholar 

  64. Fan X, Thompson B, Wang L. Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes. Struct Equ Model. 1999;6:56–83.

    Article  Google Scholar 

  65. Rakesh D, Zalesky A, Whittle S. Similar but distinct - Effects of different socioeconomic indicators on resting state functional connectivity: Findings from the Adolescent Brain Cognitive Development (ABCD) Study(R). Dev Cogn Neurosci. 2021;51:101005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moore TM, Martin IK, Gur OM, Jackson CT, Scott JC, Calkins ME, et al. Characterizing social environment’s association with neurocognition using census and crime data linked to the Philadelphia Neurodevelopmental Cohort. Psychol Med. 2016;46:599–610.

    Article  CAS  PubMed  Google Scholar 

  67. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100:253–8.

    Article  CAS  PubMed  Google Scholar 

  68. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xia CH, Ma Z, Ciric R, Gu S, Betzel RF, Kaczkurkin AN, et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat Commun. 2018;9:3003.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry. 2015;72:305–15.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  72. Wehrle FM, Michels L, Guggenberger R, Huber R, Latal B, O’Gorman RL, et al. Altered resting-state functional connectivity in children and adolescents born very preterm short title. Neuroimage Clin. 2018;20:1148–56.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cheong JL, Anderson PJ, Roberts G, Burnett AC, Lee KJ, Thompson DK, et al. Contribution of brain size to IQ and educational underperformance in extremely preterm adolescents. PLoS One. 2013;8:e77475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rakesh D, Zalesky A, Whittle S. The role of school environment in brain structure, connectivity, and mental health in children: a multimodal investigation. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:32–41.

  75. Judd N, Sauce B, Wiedenhoeft J, Tromp J, Chaarani B, Schliep A, et al. Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proc Natl Acad Sci USA. 2020;117:12411–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sripada RK, Swain JE, Evans GW, Welsh RC, Liberzon I. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network. Neuropsychopharmacology. 2014;39:2244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Monteiro JM, Rao A, Shawe-Taylor J, Mourão-Miranda J. A multiple hold-out framework for sparse partial least squares. J Neurosci Methods. 2016;271:182–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

This research is supported by the National Science Foundation (NSF:2010778) and National Research Foundation. This research/project is supported by the National Research Foundation, Singapore, and the Agency for Science Technology and Research (A*STAR), Singapore, under its Prenatal/Early Childhood Grant (Grant No. H22P0M0007), and by the Singapore Ministry of Education (Academic research fund Tier 1). This research was supported by the STI 2030—Major Project (No. 2022ZD0209000) and the A*STAR Computational Resource Centre through the use of its high-performance computing facilities. Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive [77]. This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under awards U01DA041022, U01DA041025, U01DA041028, U01DA041048, U01DA041089, U01DA041093, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners/. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/study-sites/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data repository grows and changes over time. The ABCD data used in this report came from https://doi.org/10.15154/1503209.

Author information

Authors and Affiliations

Authors

Contributions

AQ designed the study, conducted the analyses, interpreted the findings, and drafted the manuscript. CL made substantial contributions to the DTI analysis. All authors gave their final approval of the version to be published and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Anqi Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Affiliation 5 has been added mistakenly. This has been removed.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, A., Liu, C. Pathways link environmental and genetic factors with structural brain networks and psychopathology in youth. Neuropsychopharmacol. 48, 1042–1051 (2023). https://doi.org/10.1038/s41386-023-01559-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01559-7

  • Springer Nature Switzerland AG

Navigation