Skip to main content

Advertisement

Log in

Resting-state functional connectivity changes in older adults with sleep disturbance and the role of amyloid burden

  • Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

Sleep and related disorders could lead to changes in various brain networks, but little is known about the role of amyloid β (Aβ) burden—a key Alzheimer’s disease (AD) biomarker—in the relationship between sleep disturbance and altered resting state functional connectivity (rsFC) in older adults. This cross-sectional study examined the association between sleep disturbance, Aβ burden, and rsFC using a large-scale dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Sample included 489 individuals (53.6% cognitively normal, 32.5% mild cognitive impairment, and 13.9% AD) who had completed sleep measures (Neuropsychiatric Inventory), PET Aβ data, and resting-state fMRI scans at baseline. Within and between rsFC of the Salience (SN), the Default Mode (DMN) and the Frontal Parietal network (FPN) were compared between participants with sleep disturbance versus without sleep disturbance. The interaction between Aβ positivity and sleep disturbance was evaluated using the linear regressions, controlling for age, diagnosis status, gender, sedatives and hypnotics use, and hypertension. Although no significant main effect of sleep disturbance was found on rsFC, a significant interaction term emerged between sleep disturbance and Aβ burden on rsFC of SN (β = 0.11, P = 0.006). Specifically, sleep disturbance was associated with SN hyperconnectivity, only with the presence of Aβ burden. Sleep disturbance may lead to altered connectivity in the SN when Aβ is accumulated in the brain. Individuals with AD pathology may be at increased risk for sleep-related aberrant rsFC; therefore, identifying and treating sleep problems in these individuals may help prevent further disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Flow chart of the study sample.
Fig. 2: Interaction between sleep disturbance and amyloid beta positivity on the salience network connectivity.

Similar content being viewed by others

Data availability

ADNI datasets are available to the research community upon request at www.adni.loni.usc.edu. The processed imaging data are available for the qualified investigators upon request at seonjoo.lee@nyspi.columbia.edu.

References

  1. Rajan KB, Weuve J, Barnes LL, McAninch EA, Wilson RS, Evans DA. Population estimate of people with clinical Alzheimer’s disease and mild cognitive impairment in the United States (2020-2060). Alzheimers Dement. 2021;17:1966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hillman EM. Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci. 2014;37:161–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma Z, Zhang Q, Tu W, Zhang N. Gaining insight into the neural basis of resting-state fMRI signal. Neuroimage 2022;250:118960.

    Article  PubMed  Google Scholar 

  4. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One. 2009;4:e5226.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20:519–34.

    Article  PubMed  Google Scholar 

  6. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc. 2014;3:e000787.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  9. Lee JH, Delbruck T, Pfeiffer M. Training deep spiking neural networks using backpropagation. Front Neurosci. 2016;10:508.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palmqvist S, Scholl M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, et al. Earliest accumulation of beta-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun. 2017;8:1214.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, et al. Interval and continuous exercise overcome memory deficits related to beta-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res. 2019;376:112171.

    Article  PubMed  Google Scholar 

  12. Zhou J, Seeley WW. Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry. 2014;75:565–73.

    Article  PubMed  Google Scholar 

  13. Zhao Q, Lu H, Metmer H, Li WXY, Lu J. Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer’s disease. Brain Res. 2018;1678:262–72.

    Article  CAS  PubMed  Google Scholar 

  14. Chand GB, Dhamala M. Interactions between the anterior cingulate-insula network and the fronto-parietal network during perceptual decision-making. Neuroimage. 2017;152:381–9.

    Article  PubMed  Google Scholar 

  15. Song J, Chang L, Zhou R. Test anxiety impairs filtering ability in visual working memory: Evidence from event-related potentials. J Affect Disord. 2021;292:700–7.

    Article  PubMed  Google Scholar 

  16. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Manoliu A, Riedl V, Zherdin A, Muhlau M, Schwerthoffer D, Scherr M, et al. Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr Bull. 2014;40:428–37.

    Article  PubMed  Google Scholar 

  18. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao Q, Sang X, Metmer H, Swati Z, Lu J. Alzheimer’s Disease NeuroImaging I. Functional segregation of executive control network and frontoparietal network in Alzheimer’s disease. Cortex. 2019;120:36–48.

    Article  PubMed  Google Scholar 

  20. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. 2008;105:12569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim GH, Kim BR, Chun MY, Park KD, Lim SM, Jeong JH. Aberrantly higher functional connectivity in the salience network is associated with transient global amnesia. Sci Rep. 2021;11:20598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hahn A, Strandberg TO, Stomrud E, Nilsson M, van Westen D, Palmqvist S, et al. Association Between Earliest Amyloid Uptake and Functional Connectivity in Cognitively Unimpaired Elderly. Cereb Cortex. 2019;29:2173–82.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26:10222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schultz AP, Chhatwal JP, Hedden T, Mormino EC, Hanseeuw BJ, Sepulcre J, et al. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals. J Neurosci. 2017;37:4323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Winer JR, Mander BA, Helfrich RF, Maass A, Harrison TM, Baker SL, et al. Sleep as a potential biomarker of Tau and beta-Amyloid Burden in the human brain. J Neurosci. 2019;39:6315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khazaie H, Veronese M, Noori K, Emamian F, Zarei M, Ashkan K, et al. Functional reorganization in obstructive sleep apnoea and insomnia: A systematic review of the resting-state fMRI. Neurosci Biobehav Rev. 2017;77:219–31.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nie X, Shao Y, Liu SY, Li HJ, Wan AL, Nie S, et al. Functional connectivity of paired default mode network subregions in primary insomnia. Neuropsychiatr Dis Treat. 2015;11:3085–93.

    PubMed  PubMed Central  Google Scholar 

  29. Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophr Bull. 2018;44:168–81.

    Article  PubMed  Google Scholar 

  30. Ma J, Kim M, Kim J, Hong G, Namgung E, Park S, et al. Decreased functional connectivity within the salience network after two-week morning bright light exposure in individuals with sleep disturbances: a preliminary randomized controlled trial. Sleep Med. 2020;74:66–72.

    Article  PubMed  Google Scholar 

  31. Hedden T, Van Dijk KR, Becker JA, Mehta A, Sperling RA, Johnson KA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29:12686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mormino EC, Toueg TN, Azevedo C, Castillo JB, Guo W, Nadiadwala A, et al. Tau PET imaging with (18)F-PI-2620 in aging and neurodegenerative diseases. Eur J Nucl Med Mol Imaging. 2021;48:2233–44.

    Article  CAS  PubMed  Google Scholar 

  33. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 2009;326:1005–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilckens KA, Tudorascu DL, Snitz BE, Price JC, Aizenstein HJ, Lopez OL, et al. Sleep moderates the relationship between amyloid beta and memory recall. Neurobiol Aging. 2018;71:142–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16:111–6.

    Article  CAS  PubMed  Google Scholar 

  37. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–14.

    Article  CAS  PubMed  Google Scholar 

  38. Jagust WJ, Landau SM, Koeppe RA, Reiman EM, Chen K, Mathis CA, et al. The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core: 2015. Alzheimers Dement. 2015;11:757–71.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7.

    Article  CAS  PubMed  Google Scholar 

  40. Joshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jennings DL, Sadowsky CH, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer’s disease and cognitively normal subjects. J Nucl Med. 2012;53:378–84.

    Article  CAS  PubMed  Google Scholar 

  41. Royse SK, Minhas DS, Lopresti BJ, Murphy A, Ward T, Koeppe RA, et al. Validation of amyloid PET positivity thresholds in centiloids: a multisite PET study approach. Alzheimers Res Ther. 2021;13:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.

    Article  PubMed  Google Scholar 

  43. Cox RW, Hyde JS. Software tools for analysis and visualization of fMRI data. NMR Biomed. 1997;10:171–8.

    Article  CAS  PubMed  Google Scholar 

  44. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48:63–72.

    Article  PubMed  Google Scholar 

  45. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    Article  PubMed  Google Scholar 

  46. Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;8:73–85.

    Article  PubMed  Google Scholar 

  47. Fredericks CA, Sturm VE, Brown JA, Hua AY, Bilgel M, Wong DF, et al. Early affective changes and increased connectivity in preclinical Alzheimer’s disease. Alzheimers Dement (Amst). 2018;10:471–9.

    Article  PubMed  Google Scholar 

  48. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  49. Hamilton JP, Glover GH, Bagarinao E, Chang C, Mackey S, Sacchet MD, et al. Effects of salience-network-node neurofeedback training on affective biases in major depressive disorder. Psychiatry Res Neuroimaging. 2016;249:91–6.

    Article  PubMed  Google Scholar 

  50. Seeley WW. Mapping Neurodegenerative Disease Onset and Progression. Cold Spring Harb Perspect Biol. 2017;9:a023622.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu S, Guo B, Shen Z, Wang Z, Kui Y, Hu Y, et al. The imbalanced anterior and posterior default mode network in the primary insomnia. J Psychiatr Res. 2018;103:97–103.

    Article  PubMed  Google Scholar 

  52. Cheng JC, Anzolin A, Berry M, Honari H, Paschali M, Lazaridou A, et al. Dynamic Functional Brain Connectivity Underlying Temporal Summation of Pain in Fibromyalgia. Arthritis Rheumatol. 2022;74:700–10.

    Article  PubMed  Google Scholar 

  53. Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev. 2021;101:995–1046.

    Article  PubMed  Google Scholar 

  54. Hilland E, Landro NI, Harmer CJ, Maglanoc LA, Jonassen R. Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial. Front Hum Neurosci. 2018;12:508.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry. 2014;76:258–66.

    Article  PubMed  Google Scholar 

  56. Wang X, Zhang W, Sun Y, Hu M, Chen A. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia. Neuropsychologia. 2016;93:262–70.

    Article  PubMed  Google Scholar 

  57. Van Someren EJ. Doing with less sleep remains a dream. Proc Natl Acad Sci USA. 2010;107:16003–4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen HC, Su TP, Chou P. A nine-year follow-up study of sleep patterns and mortality in community-dwelling older adults in Taiwan. Sleep. 2013;36:1187–98.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc Natl Acad Sci USA. 2009;106:1608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15:56–67.

    Article  PubMed  Google Scholar 

  61. Cheng H, Gurland BJ, Maurer MS. Self-reported lack of energy (anergia) among elders in a multiethnic community. J Gerontol A Biol Sci Med Sci. 2008;63:707–14.

    Article  PubMed  Google Scholar 

  62. Agosta E, Lazzeri S, Orlandi P, Figus M, Fioravanti A, Di Desidero T, et al. Pharmacogenetics of antiangiogenic and antineovascular therapies of age-related macular degeneration. Pharmacogenomics. 2012;13:1037–53.

    Article  CAS  PubMed  Google Scholar 

  63. Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, Greve DN, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56:27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stern Y. Cognitive reserve. Neuropsychologia. 2009;47:2015–28.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Killgore WD, Schwab ZJ, Kipman M, Deldonno SR, Weber M. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions. Neuroreport. 2013;24:233–40.

    Article  PubMed  Google Scholar 

  66. Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, et al. Sleep, Cognitive impairment, and Alzheimer’s disease: A Systematic Review and Meta-Analysis. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsw032.

  67. Pase MP, Himali JJ, Grima NA, Beiser AS, Satizabal CL, Aparicio HJ, et al. Sleep architecture and the risk of incident dementia in the community. Neurology. 2017;89:1244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Henry A, Katsoulis M, Masi S, Fatemifar G, Denaxas S, Acosta D, et al. The relationship between sleep duration, cognition and dementia: a Mendelian randomization study. Int J Epidemiol. 2019;48:849–60.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11:1006–12.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Buckley RF, Hanseeuw B, Schultz AP, Vannini P, Aghjayan SL, Properzi MJ, et al. Region-Specific Association of Subjective Cognitive Decline With Tauopathy Independent of Global beta-Amyloid Burden. JAMA Neurol. 2017;74:1455–63.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hampton OL, Buckley RF, Manning LK, Scott MR, Properzi MJ, Pena-Gomez C, et al. Resting-state functional connectivity and amyloid burden influence longitudinal cortical thinning in the default mode network in preclinical Alzheimer’s disease. Neuroimage Clin. 2020;28:102407.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim H, Levine A, Cohen D, Gehrman P, Zhu X, Devanand DP, et al. The Role of Amyloid, Tau, and APOE genotype on the relationship between informant-reported sleep disturbance and Alzheimer’s disease risks. J Alzheimers Dis. 2022;87:1567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mecca AP, Michalak HR, McDonald JW, Kemp EC, Pugh EA, Becker ML, et al. Sleep Disturbance and the Risk of Cognitive Decline or Clinical Conversion in the ADNI Cohort. Dement Geriatr Cogn Disord. 2018;45:232–42.

    Article  PubMed  Google Scholar 

  74. Goukasian N, Hwang KS, Romero T, Grotts J, Do TM, Groh JR, et al. Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: a multisite observational cohort study. BMJ Open. 2019;9:e031947.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Winer JR, Deters KD, Kennedy G, Jin M, Goldstein-Piekarski A, Poston KL, et al. Association of Short and Long Sleep Duration With Amyloid-beta Burden and Cognition in Aging. JAMA Neurol. 2021;78:1187–96.

    Article  PubMed  Google Scholar 

  76. Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology. 2020;45:104–20.

    Article  CAS  PubMed  Google Scholar 

  77. Lu K, Nicholas JM, James SN, Lane CA, Parker TD, Keshavan A, et al. Increased variability in reaction time is associated with amyloid beta pathology at age 70. Alzheimers Dement (Amst). 2020;12:e12076.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all ADNI participants. This study is supported by the National Institute of Health (Grants 5T32MH020004, R01-AG062578-01A1). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Dr. Zhu is supported by the National Institute of Health (Grant K01 MH122774).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.K. and S.A.B. drafted the manuscript; S.L. obtained datasets; Y.Z. and S.L. conducted statistical analyses and revised the Statistical Analyses section; X.Z. preprocessed fMRI data; X.Z., P.R.G., D.C., D.P.D., and T.G. provided support with interpretation of the findings and manuscript revision.

Corresponding author

Correspondence to Hyun Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Zhu, X., Zhao, Y. et al. Resting-state functional connectivity changes in older adults with sleep disturbance and the role of amyloid burden. Mol Psychiatry 28, 4399–4406 (2023). https://doi.org/10.1038/s41380-023-02214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02214-9

  • Springer Nature Limited

Navigation