Skip to main content

Advertisement

Log in

Early systemic inflammation induces neurodevelopmental disorders: results from ARTEMIS, a French multicenter study of juvenile rheumatisms and systemic autoimmune and auto-inflammatory disorders and meta-analysis

  • Systematic Review
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

Prenatal immune-mediated events are known risk factors for neurodevelopmental disorders in the offspring (NDD). Although the brain continues to develop for years after birth and many postnatal factors alter the regular trajectory of neurodevelopment, little is known about the impact of postnatal immune factors. To fill this gap we set up ARTEMIS, a cohort of juvenile rheumatisms and systemic autoimmune and auto-inflammatory disorders (jRSAID), and assessed their neurodevelopment. We then complemented our results with a systematic review and meta-analysis. In ARTEMIS, we used unsupervised and supervised analysis to determine the influence of jRSAID age at onset (AO) and delay in introduction of disease-modifying therapy (DMT) on NDD (NCT04814862). For the meta-analysis, we searched MEDLINE, EMBASE, PsycINFO, Cochrane, and Web of Science up to April 2022 without any restrictions on language, or article type for studies investigating the co-occurence of jRSAID and NDD (PROSPERO- CRD42020150346). 195 patients were included in ARTEMIS. Classification tree isolated 3 groups of patients (i) A low-risk group (AO > 130 months (m)) with 5% of NDD (ii) A medium-risk group (AO < 130 m and DMT < 2 m) with 20% of NDD (iii) and a high-risk-group (AO < 130 m and DMT > 2 m) with almost half of NDD. For the meta-analysis, 18 studies encompassing a total of (i) 46,267 children with jRSAID; 213,930 children with NDD, and 6,213,778 children as controls were included. We found a positive association between jRSAID and NDD with an OR = 1.44 [95% CI 1.31; 1.57] p < 0.0001, [I2 = 66%, Tau2 = 0.0067, p < 0.01]. Several sensitivity analyses were performed without changing the results. Metaregression confirmed the importance of AO (p = 0.005). Our study supports the association between jRSAID and NDD. AO and DMT have pivotal roles in the risk of developing NDD. We plead for systematic screening of NDD in jRSAID to prevent the functional impact of NDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Different neurodevelopmental scores depending on the subtype of juvenile idiopathic arthritis.
Fig. 2: Early age of onset and delayed initiation of background treatment disrupts the neurodevelopmental trajectory.
Fig. 3: Flow chart.
Fig. 4: Results of the meta-analysis for the association between jRSAID and NDD.

Similar content being viewed by others

References

  1. Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:339–46.

    Article  PubMed  Google Scholar 

  2. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington: American Psychiatric Association; 2013.

  3. Georgiades S, Bishop SL, Frazier T. research in autism—introducing the concept of ‘chronogeneity’. J Child Psychol Psychiatry. 58. Longitudinal: Editorial Perspective; 2017. 634–6.

    Google Scholar 

  4. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet Lond Engl. 2018;392:508–20.

    Article  Google Scholar 

  5. Robertson MM, Eapen V, Singer HS, Martino D, Scharf JM, Paschou P, et al. Gilles de la Tourette syndrome. Nat Rev Dis Prim. 2017;3:16097.

    Article  PubMed  Google Scholar 

  6. Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, et al. Obsessive-compulsive disorder. Nat Rev Dis Prim. 2019;5:52.

    Article  PubMed  Google Scholar 

  7. Antoun S, Ellul P, Peyre H, Rosenzwajg M, Gressens P, Klatzmann D, et al. Fever during pregnancy as a risk factor for neurodevelopmental disorders: results from a systematic review and meta-analysis. Mol Autism. 2021;12:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellul P, Acquaviva E, Peyre H, Rosenzwajg M, Gressens P, Klatzmann D, et al. Parental autoimmune and autoinflammatory disorders as multiple risk factors for common neurodevelopmental disorders in offspring: a systematic review and meta-analysis. Transl Psychiatry. 2022;12:112.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016;351:933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci. 2018;21:765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pierrat V, Marchand-Martin L, Marret S, Arnaud C, Benhammou V, Cambonie G, et al. Neurodevelopmental outcomes at age 5 among children born preterm: EPIPAGE-2 cohort study. BMJ 2021;373:n741.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol. 2021;80:634–48.

    CAS  PubMed  Google Scholar 

  13. Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol. 2021;21:454–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Green MJ, Watkeys OJ, Whitten T, Thomas C, Kariuki M, Dean K, et al. Increased incidence of childhood mental disorders following exposure to early life infection. Brain Behav Immun. 2021;97:376–82. S0889-1591(21)00299-3

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Wang F-S, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278:369–95.

    Article  CAS  PubMed  Google Scholar 

  16. Martini A, Lovell DJ, Albani S, Brunner HI, Hyrich KL, Thompson SD, et al. Juvenile idiopathic arthritis. Nat Rev Dis Prim. 2022;8:5.

    Article  PubMed  Google Scholar 

  17. Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014;10:135–47.

    Article  CAS  PubMed  Google Scholar 

  18. Kamphuis S, Silverman ED. Prevalence and burden of pediatric-onset systemic lupus erythematosus. Nat Rev Rheumatol. 2010;6:538–46.

    Article  CAS  PubMed  Google Scholar 

  19. Pappas D. ADHD Rating Scale-IV: Checklists, norms, and clinical interpretation. J Psychoeduc Assess. 2006;24:172–8.

    Article  Google Scholar 

  20. Baron IS. Behavior rating inventory of executive function. Child Neuropsychol J Norm Abnorm Dev Child Adolesc. 2000;6:235–8.

    Google Scholar 

  21. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, et al. Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord. 2003;33:427–33.

    Article  PubMed  Google Scholar 

  22. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.4-1. 2023. https://CRAN.R-project.org/package=emmeans.

  23. Hothorn T, Zeileis A. partykit: a modular toolkit for recursive partytioning in R. J Mach Learn Res. 2015;16:3905-9. https://jmlr.org/papers/v16/hothorn15a.html.

  24. Kuhn M. caret: Classification and Regression Training. R package version 6.0-93. 2022. https://CRAN.R-project.org/package=caret.

  25. Vaissie P, Monge A, Husson F. Factoshiny: Perform Factorial Analysis from ‘FactoMineR’ with a Shiny Application. R package version 2.4. 2021. https://CRAN.R-project.org/package=Factoshiny.

  26. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eurofever Project - Home. https://www.printo.it/eurofever/index. Accessed 19 February 2021.

  28. Autoimmune Disease List • AARDA. AARDA. 2016. https://www.aarda.org/diseaselist/. Accessed 19 February 2021.

  29. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  30. Cullen AE, Holmes S, Pollak TA, Blackman G, Joyce DW, Kempton MJ, et al. Associations Between Non-neurological Autoimmune Disorders and Psychosis: A Meta-analysis. Biol Psychiatry. 2019;85:35–48.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ 1997;315:1533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153–60.

  34. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. John Wiley & Sons; 2019.

  35. Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit hyperactivity disorder. Lancet Lond Engl. 2020;395:450–62.

    Article  Google Scholar 

  36. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 2016;535:425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Prim. 2020;6:5.

    Article  PubMed  Google Scholar 

  38. Akmatov MK, Ermakova T, Bätzing J. Psychiatric and nonpsychiatric comorbidities among children with ADHD: An exploratory analysis of nationwide claims data in Germany. J Atten Disord. 2021;25:874–84.

    Article  PubMed  Google Scholar 

  39. Alabaf S, Gillberg C, Lundström S, Lichtenstein P, Kerekes N, Råstam M, et al. Physical health in children with neurodevelopmental disorders. J Autism Dev Disord. 2019;49:83–95.

    Article  PubMed  Google Scholar 

  40. Butwicka A, Lichtenstein P, Frisén L, Almqvist C, Larsson H, Ludvigsson JF. Celiac disease is associated with childhood psychiatric disorders: a population-based study. J Pediatr. 2017;184:87–93.e1.

    Article  PubMed  Google Scholar 

  41. Butwicka A, Olén O, Larsson H, Halfvarson J, Almqvist C, Lichtenstein P, et al. Association of Childhood-Onset Inflammatory Bowel Disease With Risk of Psychiatric Disorders and Suicide Attempt. JAMA Pediatr. 2019. 19 August 2019. https://doi.org/10.1001/jamapediatrics.2019.2662.

  42. Capucilli P, Cianferoni A, Grundmeier RW, Spergel JM. Comparison of comorbid diagnoses in children with and without eosinophilic esophagitis in a large population. Ann Allergy Asthma Immunol Publ Am Coll Allergy Asthma Immunol. 2018;121:711–6.

    Article  Google Scholar 

  43. Kapellen TM, Reimann R, Kiess W, Kostev K. Prevalence of medically treated children with ADHD and type 1 diabetes in Germany - Analysis of two representative databases. J Pediatr Endocrinol Metab JPEM. 2016;29:1293–7.

    CAS  PubMed  Google Scholar 

  44. Lebwohl B, Haggård L, Emilsson L, Söderling J, Roelstraete B, Butwicka A, et al. Psychiatric disorders in patients with a diagnosis of celiac disease during childhood from 1973 to 2016. Clin Gastroenterol Hepatol Clin Pr J Am Gastroenterol Assoc. 2021;19:2093–2101.e13.

    Article  Google Scholar 

  45. Lee M, Krishnamurthy J, Susi A, Sullivan C, Gorman GH, Hisle-Gorman E, et al. Association of autism spectrum disorders and inflammatory bowel disease. J Autism Dev Disord. 2018;48:1523–9.

    Article  PubMed  Google Scholar 

  46. Lin C-H, Lin W-D, Chou I-C, Lee I-C, Hong S-Y. Heterogeneous neurodevelopmental disorders in children with Kawasaki disease: what is new today? BMC Pediatr. 2019;19:406.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nielsen PR, Benros ME, Dalsgaard S. Associations between autoimmune diseases and attention-deficit/hyperactivity disorder: a nationwide study. J Am Acad Child Adolesc Psychiatry. 2017;56:234–240.e1.

    Article  PubMed  Google Scholar 

  48. Robinson C, Lao F, Chanchlani R, Gayowsky A, Darling E, Batthish M. Long-term hearing and neurodevelopmental outcomes following Kawasaki disease: A population-based cohort study. Brain Dev. 2021;43:735–44.

    Article  PubMed  Google Scholar 

  49. Heifert TA, Susi A, Hisle-Gorman E, Erdie-Lalena CR, Gorman G, Min SB, et al. Feeding disorders in children with autism spectrum disorders are associated with eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 2016;63:e69–73.

    Article  PubMed  Google Scholar 

  50. Mercadante MT, Busatto GF, Lombroso PJ, Prado L, Rosário-Campos MC, do Valle R, et al. The psychiatric symptoms of rheumatic fever. Am J Psychiatry. 2000;157:2036–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ucuz I, Altunisik N, Sener S, Turkmen D, Kavuran NA, Marsak M, et al. Quality of life, emotion dysregulation, attention deficit and psychiatric comorbidity in children and adolescents with vitiligo. Clin Exp Dermatol. 2021;46:510–5.

    Article  CAS  PubMed  Google Scholar 

  52. Zelnik N, Pacht A, Obeid R, Lerner A. Range of neurologic disorders in patients with celiac disease. Pediatrics 2004;113:1672–6.

    Article  PubMed  Google Scholar 

  53. Zerbo O, Leong A, Barcellos L, Bernal P, Fireman B, Croen LA. Immune mediated conditions in autism spectrum disorders. Brain Behav Immun. 2015;46:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Güngör S, Celiloğlu OS, Ozcan OO, Raif SG, Selimoğlu MA. Frequency of celiac disease in attention-deficit/hyperactivity disorder. J Pediatr Gastroenterol Nutr. 2013;56:211–4.

    Article  PubMed  Google Scholar 

  55. Ho H-Y, Wong C-K, Wu S-Y, Hsiao RC, Chen Y-L, Yen C-F. Increased Alopecia Areata risk in children with attention-deficit/hyperactivity disorder and the impact of methylphenidate use: a nationwide population-based cohort study. Int J Environ Res Public Health. 2021;18:1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Granjon M, Rohmer O, Doignon-Camus N, Popa-Roch M, Pietrement C, Gavens N. Neuropsychological functioning and academic abilities in patients with juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2021;19:53.

    Article  PubMed  PubMed Central  Google Scholar 

  57. von Weiss RT, Rapoff MA, Varni JW, Lindsley CB, Olson NY, Madson KL, et al. Daily hassles and social support as predictors of adjustment in children with pediatric rheumatic disease. J Pediatr Psychol. 2002;27:155–65.

    Article  Google Scholar 

  58. Daltroy LH, Larson MG, Eaton HM, Partridge AJ, Pless IB, Rogers MP, et al. Psychosocial adjustment in juvenile arthritis. J Pediatr Psychol. 1992;17:277–89.

    Article  CAS  PubMed  Google Scholar 

  59. Özer S, Bozkurt H, Yılmaz R, Sönmezgöz E, Bütün I. Evaluation of executive functions in children and adolescents with familial Mediterranean fever. Child Neuropsychol J Norm Abnorm Dev Child Adolesc. 2017;23:332–42.

    Google Scholar 

  60. Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015;38:145–57.

    Article  CAS  PubMed  Google Scholar 

  61. Salvador AF, de Lima KA, Kipnis J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol. 2021;21:526–41.

    Article  CAS  PubMed  Google Scholar 

  62. Ross G, Sammaritano L, Nass R, Lockshin M. Effects of mothers’ autoimmune disease during pregnancy on learning disabilities and hand preference in their children. Arch Pediatr Adolesc Med. 2003;157:397–402.

    Article  PubMed  Google Scholar 

  63. Alves de Lima K, Rustenhoven J, Da Mesquita S, Wall M, Salvador AF, Smirnov I, et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat Immunol. 2020;21:1421–9.

    Article  CAS  PubMed  Google Scholar 

  64. Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T, Santa C, et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol. 2019;4:eaay5199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krol A, Feng G. Windows of opportunity: timing in neurodevelopmental disorders. Curr Opin Neurobiol. 2018;48:59–63.

    Article  CAS  PubMed  Google Scholar 

  66. Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci. 2021;22:657–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaul D, Habbel P, Derkow K, Krüger C, Franzoni E, Wulczyn FG, et al. Expression of Toll-like receptors in the developing brain. PloS One. 2012;7:e37767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hung Y-Y. Antidepressants improve negative regulation of toll-like receptor signaling in monocytes from patients with major depression. Neuroimmunomodulation 2018;25:42–48.

    Article  CAS  PubMed  Google Scholar 

  69. Missig G, Robbins JO, Mokler EL, McCullough KM, Bilbo SD, McDougle CJ, et al. Sex-dependent neurobiological features of prenatal immune activation via TLR7. Mol Psychiatry. 2020;25:2330–41.

    Article  CAS  PubMed  Google Scholar 

  70. Park SJ, Lee JY, Kim SJ, Choi S-Y, Yune TY, Ryu JH. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci Rep. 2015;5:8502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 2011;34:269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen R, Davis LK, Guter S, Wei Q, Jacob S, Potter MH, et al. Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism. Mol Autism. 2017;8:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meredith RM, Dawitz J, Kramvis I. Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends Neurosci. 2012;35:335–44.

    Article  CAS  PubMed  Google Scholar 

  74. Millan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, et al. Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov. 2016;15:485–515.

    Article  CAS  PubMed  Google Scholar 

  75. Fitzpatrick Z, Frazer G, Ferro A, Clare S, Bouladoux N, Ferdinand J, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 2020;587:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liston A, Dooley J, Yshii L. Brain-resident regulatory T cells and their role in health and disease. Immunol Lett. 2022;248:26–30. S0165-2478(22)00092-X

    Article  CAS  PubMed  Google Scholar 

  77. Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2017;42:284–98.

    Article  CAS  Google Scholar 

  78. Bennabi M, Gaman A, Delorme R, Boukouaci W, Manier C, Scheid I, et al. HLA-class II haplotypes and Autism spectrum disorders. Sci Rep. 2018;8:7639.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet Lond Engl. 2013;381:1371–9.

    Article  Google Scholar 

  80. Schanberg LE, Lefebvre JC, Keefe FJ, Kredich DW, Gil KM. Pain coping and the pain experience in children with juvenile chronic arthritis. Pain 1997;73:181–9.

    Article  PubMed  Google Scholar 

  81. La Hausse de Lalouvière L, Ioannou Y, Fitzgerald M. Neural mechanisms underlying the pain of juvenile idiopathic arthritis. Nat Rev Rheumatol. 2014;10:205–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Camille Aupiais and Charlène Da Silveira for their precious help in the inclusion of the patients.

Funding

The authors received funding from DM’UP (Robert Debré).

Author information

Authors and Affiliations

Authors

Contributions

PE and IM: have designed the ARTEMIS study, did the statistics, and wrote the first draft of the article. IM, FA, BBM, AB, GD, CD, AF, MLF, UM, PQ, IS, CV: inclusion of ARTEMIS patients. LL: extracted the data of the patients included in ARTEMIS and participated in the first statistical analyses. NT: Supervision of ARTEMIS statistical analysis. PE and SA: Searched the studies for the meta-analysis, extracted the data, and did the statistics. HP: helped for meta-analysis statistics. RD and DK: Overall supervision and guidance of the whole article. All authors contributed significantly to the proofreading and improvement of the first draft. All authors confirm that they had full access to all the data and accept responsibility to submit for publication.

Corresponding author

Correspondence to Pierre Ellul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellul, P., Melki, I., Antoun, S. et al. Early systemic inflammation induces neurodevelopmental disorders: results from ARTEMIS, a French multicenter study of juvenile rheumatisms and systemic autoimmune and auto-inflammatory disorders and meta-analysis. Mol Psychiatry 28, 1516–1526 (2023). https://doi.org/10.1038/s41380-023-01980-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01980-w

  • Springer Nature Limited

Navigation