Skip to main content

Advertisement

Log in

ACh signaling modulates activity of the GABAergic signaling network in the basolateral amygdala and behavior in stress-relevant paradigms

  • Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light–dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or β2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Activity of BLA neurons and ACh release during stress-relevant behaviors.
Fig. 2: GCaMP6f activity in CaMKII, VIP, PV and SOM neurons following physostigmine administration (0.15 mg/kg, i.p.).
Fig. 3: Knockdown of the α7 or β2 nAChR subunits in principal neurons (CAMKII-Cre), inhibitory neurons (GAD65-Cre) or GABAergic neuronal subtypes (VIP-Cre, PV-Cre, SOM-Cre) in the BLA.
Fig. 4: Schematic summarizing effects of ACh and cholinergic receptors in the BLA and their influence on behavior.

Similar content being viewed by others

References

  1. Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, et al. The effects of psychological stress on depression. Curr Neuropharmacol. 2015;13:494–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nanda SA, Qi C, Roseboom PH, Kalin NH. Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes Brain Behav. 2008;7:639–48.

    CAS  PubMed  Google Scholar 

  3. He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol. 2008;210:349–58.

    CAS  PubMed  Google Scholar 

  4. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry. 2002;51:693–707.

    PubMed  Google Scholar 

  5. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118.

    PubMed  PubMed Central  Google Scholar 

  6. Mineur YS, Somenzi O, Picciotto MR. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology. 2007;52:1256–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Crouse RB, Kim K, Batchelor HM, Girardi EM, Kamaletdinova R, Chan J, et al. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. Elife. 2020;9:e57335.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang YY, Zhang Y, Cui S, Liu FY, Yi M, Wan Y. Cholinergic neurons in medial septum maintain anxiety-like behaviors induced by chronic inflammatory pain. Neurosci Lett. 2018;671:7–12.

    CAS  PubMed  Google Scholar 

  9. Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelucci L. Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol. 1989;165:337–8.

    CAS  PubMed  Google Scholar 

  10. Mineur YS, Fote GM, Blakeman S, Cahuzac EL, Newbold SA, Picciotto MR. Multiple nicotinic acetylcholine receptor subtypes in the mouse amygdala regulate affective behaviors and response to social stress. Neuropsychopharmacology. 2016;41:1579–87.

    CAS  PubMed  Google Scholar 

  11. Rabenstein RL, Caldarone BJ, Picciotto MR. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology. 2006;189:395–401.

    CAS  PubMed  Google Scholar 

  12. Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16:710–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, et al. Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Rep. 2017;18:905–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Picciotto MR, Addy NA, Mineur YS, Brunzell DH. It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol. 2008;84:329–42.

    CAS  PubMed  Google Scholar 

  15. Muller JF, Mascagni F, McDonald AJ. Cholinergic innervation of pyramidal cells and parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J Comp Neurol. 2011;519:790–805.

    PubMed  PubMed Central  Google Scholar 

  16. Pidoplichko VI, Prager EM, Aroniadou-Anderjaska V, Braga MF. alpha7-Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability. J Neurophysiol. 2013;110:2358–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Krabbe S, Grundemann J, Luthi A. Amygdala inhibitory circuits regulate associative fear conditioning. Biol Psychiatry. 2018;83:800–9.

    PubMed  Google Scholar 

  18. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102:75–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rhomberg T, Rovira-Esteban L, Vikor A, Paradiso E, Kremser C, Nagy-Pal P, et al. Vasoactive intestinal polypeptide-immunoreactive interneurons within circuits of the mouse basolateral amygdala. J Neurosci. 2018;38:6983–7003.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020;17:1139–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Calarco CA, Li Z, Taylor SR, Lee S, Zhou W, Friedman JM, et al. Molecular and cellular characterization of nicotinic acetylcholine receptor subtypes in the arcuate nucleus of the mouse hypothalamus. Eur J Neurosci. 2018;48:1600–19.

    Google Scholar 

  22. Mineur YS, Mose TN, Blakeman S, Picciotto MR. Hippocampal alpha7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice. Br J Pharmacol. 2018;175:1903–14.

    CAS  PubMed  Google Scholar 

  23. Mineur YS, Abizaid A, Rao Y, Salas R, DiLeone RJ, Gundisch D, et al. Nicotine decreases food intake through activation of POMC neurons. Science. 2011;332:1330–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wohleb ES, Wu M, Gerhard DM, Taylor SR, Picciotto MR, Alreja M, et al. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Investig. 2016;126:2482–94.

    PubMed  PubMed Central  Google Scholar 

  25. Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron. 2008;57:809–18.

    CAS  PubMed  Google Scholar 

  26. Mineur YS, Einstein EB, Seymour PA, Coe JW, O’Neill BT, Rollema H, et al. alpha4beta2 nicotinic acetylcholine receptor partial agonists with low intrinsic efficacy have antidepressant-like properties. Behav Pharmacol. 2011;22:291–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rollema H, Guanowsky V, Mineur YS, Shrikhande A, Coe JW, Seymour PA, et al. Varenicline has antidepressant-like activity in the forced swim test and augments sertraline’s effect. Eur J Pharmacol. 2009;605:114–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rollema H, Coe JW, Chambers LK, Hurst RS, Stahl SM, Williams KE. Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation. Trends Pharmacol Sci. 2007;28:316–25.

    CAS  PubMed  Google Scholar 

  29. Vereczki VK, Muller K, Krizsan E, Mate Z, Fekete Z, Rovira-Esteban L, et al. Total number and ratio of GABAergic neuron types in the mouse lateral and basal amygdala. J Neurosci. 2021;41:4575–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci USA. 2013;110:3573–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mineur YS, Ernstsen C, Islam A, Lefoli Maibom K, Picciotto MR. Hippocampal knockdown of alpha2 nicotinic or M1 muscarinic acetylcholine receptors in C57BL/6J male mice impairs cued fear conditioning. Genes Brain Behav. 2020;19:e12677.

    CAS  PubMed  Google Scholar 

  32. Cope ZA, Lavadia ML, Joosen AJM, van de Cappelle CJA, Lara JC, Huval A, et al. Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus. Cogn Affect Behav Neurosci. 2020;20:1173–83.

    PubMed  PubMed Central  Google Scholar 

  33. Imperato A, Puglisi-Allegra S, Casolini P, Angelucci L. Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Res. 1991;538:111–7.

    CAS  PubMed  Google Scholar 

  34. Mitsushima D, Masuda J, Kimura F. Sex differences in the stress-induced release of acetylcholine in the hippocampus and corticosterone from the adrenal cortex in rats. Neuroendocrinology. 2003;78:234–40.

    CAS  PubMed  Google Scholar 

  35. Mineur YS, Cahuzac EL, Mose TN, Bentham MP, Plantenga ME, Thompson DC, et al. Interaction between noradrenergic and cholinergic signaling in amygdala regulates anxiety- and depression-related behaviors in mice. Neuropsychopharmacology. 2018;43:2118–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Risch SC, Cohen RM, Janowsky DS, Kalin NH, Sitaram N, Gillin JC, et al. Physostigmine induction of depressive symptomatology in normal human subjects. Psychiatry Res. 1981;4:89–94.

    CAS  PubMed  Google Scholar 

  37. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci. 2013;16:1662–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee AT, Cunniff MM, See JZ, Wilke SA, Luongo FJ, Ellwood IT, et al. VIP Interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron. 2019;102:1223–34. e1224

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Scheyltjens I, Arckens L. The current status of somatostatin-interneurons in inhibitory control of brain function and plasticity. Neural Plast. 2016;2016:8723623.

    PubMed  PubMed Central  Google Scholar 

  41. Crawley JN. Evaluating anxiety in rodents. In: Crusio WE, Gerlai RT, editors. Handbook of molecular-genetic techniques for brain and behavior research, vol. 13. Amsterdam, The Netherlands: Elsevier Science BV; 1999. p. 667–73.

  42. Mineur YS, Picciotto MR. The role of acetylcholine in negative encoding bias: too much of a good thing? Eur J Neurosci. 2021;53:114–25.

    CAS  PubMed  Google Scholar 

  43. Unal CT, Pare D, Zaborszky L. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons. J Neurosci. 2015;35:853–63.

    PubMed  PubMed Central  Google Scholar 

  44. Krabbe S, Paradiso E, d’Aquin S, Bitterman Y, Courtin J, Xu C, et al. Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat Neurosci. 2019;22:1834–43.

    CAS  PubMed  Google Scholar 

  45. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Transl Psychiatry. 2017;7:e1194.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature. 2014;509:453–8.

    CAS  PubMed  Google Scholar 

  48. Askew CE, Lopez AJ, Wood MA, Metherate R. Nicotine excites VIP interneurons to disinhibit pyramidal neurons in auditory cortex. Synapse. 2019;73:e22116.

    PubMed  PubMed Central  Google Scholar 

  49. Urban-Ciecko J, Jouhanneau JS, Myal SE, Poulet JFA, Barth AL. Precisely timed nicotinic activation drives SST inhibition in neocortical circuits. Neuron. 2018;97:611–25. e615

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krenz I, Kalkan D, Wevers A, de Vos RA, Steur EN, Lindstrom J, et al. Parvalbumin-containing interneurons of the human cerebral cortex express nicotinic acetylcholine receptor proteins. J Chem Neuroanat. 2001;21:239–46.

    CAS  PubMed  Google Scholar 

  51. McClure-Begley TD, Stone KL, Marks MJ, Grady SR, Colangelo CM, Lindstrom JM, et al. Exploring the nicotinic acetylcholine receptor-associated proteome with iTRAQ and transgenic mice. Genom Proteom Bioinform. 2013;11:207–18.

    CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by National Institutes of Health grants MH077681, MH105824, and DA033945 from the National Institutes of Health and a NARSAD Distinguished Investigator grant from the Brain and Behavior Research Foundation. This work was funded in part by the State of Connecticut, Department of Mental Health and Addiction Services, but this publication does not express the views of the Department of Mental Health and Addiction Services or the State of Connecticut.

Author information

Authors and Affiliations

Authors

Contributions

YSM designed, carried out and contributed to all experiments, analyzed data, and wrote the manuscript. TNM and STP carried out and contributed to all knockdown experiments; KLM carried out and contributed to knockdown experiments and GCaMP fiber photometry recording and analyses; ARS contributed to fiber photometry analyses; HW and YH carried out and contributed to GACh fiber photometry experiments and analyses; SRT designed and validated the conditional nAChR knockdown vector; MRP designed the study, analyzed outcomes, and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Marina R. Picciotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineur, Y.S., Mose, T.N., Maibom, K.L. et al. ACh signaling modulates activity of the GABAergic signaling network in the basolateral amygdala and behavior in stress-relevant paradigms. Mol Psychiatry 27, 4918–4927 (2022). https://doi.org/10.1038/s41380-022-01749-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01749-7

  • Springer Nature Limited

Navigation