Skip to main content

Advertisement

Log in

Cocaine-induced ischemia in prefrontal cortex is associated with escalation of cocaine intake in rodents

  • Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

Cocaine-induced vasoconstriction reduces blood flow, which can jeopardize neuronal function and in the prefrontal cortex (PFC) it may contribute to compulsive cocaine intake. Here, we used integrated optical imaging in a rat self-administration and a mouse noncontingent model, to investigate whether changes in the cerebrovascular system in the PFC contribute to cocaine self-administration, and whether they recover with detoxification. In both animal models, cocaine induced severe vasoconstriction and marked reductions in cerebral blood flow (CBF) in the PFC, which were exacerbated with chronic exposure and with escalation of cocaine intake. Though there was a significant proliferation of blood vessels in areas of vasoconstriction (angiogenesis), CBF remained reduced even after 1 month of detoxification. Treatment with Nifedipine (Ca2+ antagonist and vasodilator) prevented cocaine-induced CBF decreases and neuronal Ca2+ changes in the PFC, and decreased cocaine intake and blocked reinstatement of drug seeking. These findings provide support for the hypothesis that cocaine-induced CBF reductions lead to neuronal deficits that contribute to hypofrontality and to compulsive-like cocaine intake in addiction, and document that these deficits persist at least one month after detoxification. Our preliminary data showed that nifedipine might be beneficial in preventing cocaine-induced vascular toxicity and in reducing cocaine intake and preventing relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rapinesi C, et al. Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex reduces cocaine craving in patients with cocaine use disorder. Neurosci Lett. 2016 Aug 26;629:43–47.

  2. Volkow ND, Morales M, The Brain on Drugs: From Reward to Addiction, Cell. 2015 Aug 13; 162(4):712–25.

  3. Levine SR, et al. “Crack” cocaine-associated stroke. Neurology. 1987;37:1849–53.

    CAS  PubMed  Google Scholar 

  4. Levine SR, et al. A comparative study of the cerebrovascular complications of cocaine: alkaloidal versus hydrochloride—a review. Neurology. 1991;41:1173–7.

    CAS  PubMed  Google Scholar 

  5. Tuchman AJ, Daras M, Zalzal P, Mangiardi J. Intracranial hemorrhage after cocaine abuse. J Am Med Assoc. 1987;257:1175.

    CAS  Google Scholar 

  6. Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K. Cerebral blood flow in chronic-cocaine users: a study with positron emission tomography. Br J Psychiatry. 1988;152:641–8.

    CAS  PubMed  Google Scholar 

  7. Zhang Q, et al. Chronic-cocaine disrupts neurovascular networks and cerebral function: optical imaging studies in rodents. J Biomed Opt. 2016;21:26006.

    PubMed  Google Scholar 

  8. Ren H, et al. Cocaine-induced cortical microischemia in the rodent brain: clinical implications. Mol Psychiatry. 2012;17:1017–25.

    CAS  PubMed  Google Scholar 

  9. You J, Du C, Volkow ND, Pan Y. Optical coherence Doppler tomography for quantitative cerebral blood flow imaging. Biomed Opt Express. 2014;5:3217–30.

    PubMed  PubMed Central  Google Scholar 

  10. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282:298–300.

    CAS  PubMed  Google Scholar 

  11. Koob GF, in Addiction Medicine: Science and Practice, AB Johnson, editor. New York, NY: Springer; 2011. p. 333–57.

  12. Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56(Suppl. 1):S18–S31.

    Google Scholar 

  13. Wee S, Orio L, Ghirmai S, Cashman JR, Koob GF. Inhibition of kappa opioid receptors attenuated increased cocaine intake in rats with extended access to cocaine. Psychopharmacology. 2009;205:565–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan Z, Luo Z, Volkow ND, Pan Y, Du C. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo. Neuroimage. 2011;54:1130–9.

    CAS  PubMed  Google Scholar 

  15. Araki H, Hino N, Karasawa Y, Kawasaki H, Gomita Y. Effect of calcium channel blockers on cerebral ischemia-induced hyperactivity in Mongolian gerbils. Physiol Behav. 1999;67:573–7.

    CAS  PubMed  Google Scholar 

  16. Chen W, Liu P, Volkow ND, Pan Y, Du C. Cocaine attenuates blood flow but not neuronal responses to stimulation while preserving neurovascular coupling for resting brain activity. Mol Psychiatry. 2016;21:1408–16.

    CAS  PubMed  Google Scholar 

  17. Gu X, Chen W, You J, Koretsky AP, Volkow ND, Pan Y, et al. Long-term optical imaging of neurovascular coupling in mouse cortex using GCaMP6f and intrinsic hemodynamic signals. Neuroimage. 2018;165:251–64.

    PubMed  Google Scholar 

  18. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Elsevier Academic Press; 2004.

  19. You J, Zhang Q, Park K, Du C, Pan Y. Quantitative imaging of microvascular blood flow networks in deep cortical layers by 1310 nm μODT. Opt Lett. 2015;40:4293–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Y, et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett. 2000;25:114–6.

    CAS  PubMed  Google Scholar 

  21. Palagyi K, Kuba A. A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters, 1998;19:627.

  22. McFarland K, Kalivas PW. The circuitry mediating cocaine-induced reinstatement of drug seeking behavior. J Neurosci. 2001;21:8655–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Park K, You J, Du C, Pan Y. Cranial window implantation on mouse cortex to study microvascular change induced by cocaine. Quant Imaging Med Surg. 2015;5:97–107.

    PubMed  PubMed Central  Google Scholar 

  24. He GQ, Zhang A, Altura BT, Altura BM. Cocaine-induced cerebrovasospasm and its possible mechanism of action. J Pharmacol Exp Ther. 1994;268:1532.

    CAS  PubMed  Google Scholar 

  25. Shen Y, Pu IM, Ahearn T, Clemence M, Schwarzbauer C. Quantification of venous vessel size in human brain in response to hypercapnia and hyperoxia using magnetic resonance imaging. Magn Reson Med. 2013;69:1541–52.

    CAS  PubMed  Google Scholar 

  26. Abbound FM, Eckstein JW, Zimmerman BG, Graham MH. Sensitization of arteries, veins, and small vessels to norepinephrine after cocaine. Circ Res. 1964;15:247–57.

    CAS  PubMed  Google Scholar 

  27. Sofuoglu M, Nelson D, Babb DA, Hatsukami DK. Intravenous cocaine increases plasma epinephrine and norepinephrine in humans. Pharmacol Biochem Behav. 2001;68:455–9.

    CAS  PubMed  Google Scholar 

  28. Kalsner S. Cocaine sensitization of coronary artery contractions: mechanism of drug-induced spasm. J Pharmacol Exp Ther. 1993;264:1132–40.

    CAS  PubMed  Google Scholar 

  29. Laporte R, DeRoth L. Modulation of the effects of norepinephrine uptake inhibitors on the norepinephrine-induced contractile response of the porcine uterine artery during early pregnancy. Can J Vet Res. 1997;61:214–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohtsuki S, Yamaguchi H, Kang YS, Hori S, Terasaki T. Reduction of L-type amino acid transporter 1 mRNA expression in brain capillaries in a mouse model of Parkinson’s disease. Biol Pharm Bull. 2010;33:1250–2.

    CAS  PubMed  Google Scholar 

  31. Krimer LS, Muly EC, Williams GV, Goldman-Rakic PS. Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci. 1998;1:286–9.

    CAS  PubMed  Google Scholar 

  32. Giessler C, Wangemann T, Silber RE, Dhein S, Brodde OE. Noradrenaline-induced contraction of human saphenous vein and human internal mammary artery: involvement of different alpha-adrenoceptor subtypes. Naunyn Schmiede Arch Pharmacol. 2002;366:104–9. Epub 2002 Jun 14

    CAS  Google Scholar 

  33. Chen W, Volkow ND, Li J, Pan Y, Du C. Cocaine decreases spontaneous neuronal activity and increases low-frequency neuronal and hemodynamic cortical oscillations, Cereb Cortex. 2018. https://doi.org/10.1093/cercor/bhy057

  34. Al-Rawi PG, Kirkpatrick PJ. Tissue oxygen index: thresholds for cerebral ischemia using near-infrared spectroscopy. Strokec. 2006;37:2720–5.

    Google Scholar 

  35. Sordo L, et al. Cocaine use and risk of stroke: a systematic review. Drug Alcohol Depend. 2014;142:1–13.

    CAS  PubMed  Google Scholar 

  36. Toossi S, Hess CP, Hills NK, Josephson SA. Neurovascular complications of cocaine use at a tertiary stroke center. J Stroke Cerebrovasc Dis. 2010;19:273–8.

    PubMed  Google Scholar 

  37. Treadwell SD, Robinson TG. Cocaine use and stroke. Postgrad Med J. 2007;83:389–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. You J, Volkow ND, Park K, Zhang Q, Clare K, Du C, et al. Cerebrovascular adaptations to cocaine-induced transient ischemic attacks in the rodent brain. JCI Insight. 2017;2:e90809 https://doi.org/10.1172/jci.insight.90809

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab. 2003;23:166–80.

    CAS  PubMed  Google Scholar 

  40. Strong DH, et al. Eosinophilic “empyema” associated with crack cocaine use. Thorax. 2003;58:823–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marti HJ, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156:965–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang ZG, et al. Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. 2002;22:379–92.

    CAS  PubMed  Google Scholar 

  43. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794–8.

    CAS  PubMed  Google Scholar 

  44. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32:2179–84.

    CAS  PubMed  Google Scholar 

  45. George O, Mandyam CD, Wee S, Koob GF. Extended access to cocaine self-administration produces long-lasting prefrontal cortex-dependent working memory impairments. Neuropsychopharmacology. 2008;33:2474–82. Epub 2007 Nov 21

    CAS  PubMed  Google Scholar 

  46. Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–62.

    CAS  PubMed  Google Scholar 

  47. Cunningham JJ, Orr E, Lothian BC, Morgen J, Brebner K Effects of fendiline on cocaine-seeking behavior in the rat. Psychopharmacology (Berl). 2015;232:4401–10.

  48. Muntaner C, Kumor KM, Nagoshi C, Jaffe JH. Effects of nifedipine pretreatment on subjective and cardiovascular responses to intravenous cocaine in humans. Psychopharmacology (Berl). 1991;105:37–41.

  49. Calcagnetti DJ, Keck BJ, Quatrella LA, Schechter MD Blockade of cocaine-induced conditioned place preference: relevance to cocaine abuse therapeutics. Life Sci. 1995;56:475–83.

  50. Degoulet M, Stelly CE, Ahn KC, Morikawa H. L-type Ca2+ channel blockade with antihypertensive medication disrupts VTA synaptic plasticity and drug-associated contextual memory. Mol Psychiatry. 2016;21:394–402.

    CAS  PubMed  Google Scholar 

  51. Buttner A. Review: the neuropathology of drug abuse. Neuropathol Appl Neurobiol. 2011;37:118–34.

    CAS  PubMed  Google Scholar 

  52. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell . 2015;162:712–25.

    CAS  PubMed  Google Scholar 

  53. Maekawa T, Tommasino C, Shapiro HM, Keifer-Goodman J, Kohlenberger RW. Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology. 1986;65:144–51.

    CAS  PubMed  Google Scholar 

  54. Edvinsson L, Johansson BB, Larsson B, MacKenzie ET, Skarby T, Young AR. Calcium antagonists: effects on cerebral blood flow and blood–brain barrier permeability in the rat. Br J Pharmacol. 1983;79:141–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We specially thank to Sunmee Wee for conducting the initial self-administration experiment and analyzing that behavior data. Also to J. Li for partially assisting with figure illustration (Fig. 5) and Q.J. Zhang for assisting with noncontingent cocaine administration of rats and their VEGF studies on PFC and the somatosensory cortex. This work was supported in part by National Institutes of Health (NIH) grants 1R01DA029718 (C.D. and Y.P.), R21DA042597 (Y.P. and C.D.), R01DA04398 (G.F.K. when he was at The Scripps Research Institute), and NIH’s Intramural Program of NIAAA (NDV). The authors would also like to thank the NIDA drug supply program for providing the cocaine used in the calcium antagonist and mouse model experiments.

Author contributions

C.D. and Y.P. designed and built the optical setups. N.D.V., C.D., and Y.P. designed the experiments. G.F.K. designed the self-administration model and provided self-administering animals and helped with analysis and interpretation of the results. C.P.A. conducted self-administration animals for Ca2+ antagonist studies. C.P.A., J.Y., and K.P. carried out the imaging experiments and data analysis. All authors proofread the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Congwu Du, Nora D. Volkow or Yingtian Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Volkow, N.D., You, J. et al. Cocaine-induced ischemia in prefrontal cortex is associated with escalation of cocaine intake in rodents. Mol Psychiatry 25, 1759–1776 (2020). https://doi.org/10.1038/s41380-018-0261-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0261-8

  • Springer Nature Limited

This article is cited by

Navigation