Skip to main content
Log in

mGluR5 hypofunction is integral to glutamatergic dysregulation in schizophrenia

  • Article
  • Published:
Molecular Psychiatry Submit manuscript

Abstract

Multiple lines of evidence point to glutamatergic signaling in the postsynaptic density (PSD) as a pathophysiologic mechanism in schizophrenia. Integral to PSD glutamatergic signaling is reciprocal interplay between GluN and mGluR5 signaling. We examined agonist-induced mGluR5 signaling in the postmortem dorsolateral prefrontal cortex (DLPFC) derived from 17 patients and age-matched and sex-matched controls. The patient group showed a striking reduction in mGluR5 signaling, manifested by decreases in Gq/11 coupling and association with PI3K and Homer compared to controls (p < 0.01 for all). This was accompanied by increases in serine and tyrosine phosphorylation of mGluR5, which can decrease mGluR5 activity via desensitization (p < 0.01). In addition, we find altered protein–protein interaction (PPI) of mGluR5 with RGS4, norbin, Preso 1 and tamalin, which can also attenuate mGluR5 activity. We previously reported molecular underpinnings of GluN hypofunction (decreased GluN2 phosphorylation) and here we show those of reduced mGluR5 signaling in schizophrenia. We find that reduced GluN2 phosphorylation can be precipitated by attenuated mGluR5 activity and that increased mGluR5 phosphorylation can result from decreased GluN function, suggesting a reciprocal interplay between the two pathways in schizophrenia. Interestingly, the patient group showed decreased mGluR5–GluN association (p < 0.01), a mechanistic basis for the reciprocal facilitation. In sum, we present the first direct evidence for mGluR5 hypoactivity, propose a reciprocal interplay between GluN and mGluR5 pathways as integral to glutamatergic dysregulation and suggest protein–protein interactions in mGluR5–GluN complexes as potential targets for intervention in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Network & Pathway Analysis Subgroup of Psychiatric Genomics, C. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18:199–209. https://doi.org/10.1038/nn.3922

  2. Purcell SM, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–90. https://doi.org/10.1038/nature12975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7. https://doi.org/10.1038/nature13595

  4. Perroy J, et al. Direct interaction enables cross-talk between ionotropic and group I metabotropic glutamate receptors. J Biol Chem. 2008;283:6799–805. https://doi.org/10.1074/jbc.M705661200

    Article  CAS  PubMed  Google Scholar 

  5. Marino MJ, Conn PJ. Direct and indirect modulation of the N-methyl D-aspartate receptor. Curr Drug Targets CNS Neurol Disord. 2002;1:1–16.

    Article  CAS  Google Scholar 

  6. Alagarsamy S, et al. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol Biochem Behav. 2002;73:299–306.

    Article  CAS  Google Scholar 

  7. Kantrowitz J, Javitt DC. Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry. 2012;25:96–102. https://doi.org/10.1097/YCO.0b013e32835035b2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alagarsamy S, et al. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci. 1999;2:234–40. https://doi.org/10.1038/6338

    Article  CAS  PubMed  Google Scholar 

  9. Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B. Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology. 2004;29:1259–69. https://doi.org/10.1038/sj.npp.1300417

    Article  CAS  PubMed  Google Scholar 

  10. Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci. 2013;9:948–59. https://doi.org/10.7150/ijbs.6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hovelso N, et al. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol. 2012;10:12–48. https://doi.org/10.2174/157015912799362805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krystal JH, et al. Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs. 2010;24:669–93. https://doi.org/10.2165/11533230-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  14. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science. 1998;281:1349–52.

    Article  CAS  Google Scholar 

  15. Matosin N, Newell KA. Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev. 2013;37:256–68. https://doi.org/10.1016/j.neubiorev.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  16. Devon RS, et al. The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol Psychiatry. 2001;6:311–4. https://doi.org/10.1038/sj.mp.4000848

    Article  CAS  PubMed  Google Scholar 

  17. Kordi-Tamandani DM, Dahmardeh N, Torkamanzehi A. Evaluation of hypermethylation and expression pattern of GMR2, GMR5, GMR8, and GRIA3 in patients with schizophrenia. Gene. 2013;515:163–6. https://doi.org/10.1016/j.gene.2012.10.075

    Article  CAS  PubMed  Google Scholar 

  18. St Clair D, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990;336:13–16.

    Article  Google Scholar 

  19. Szatkiewicz JP, et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry. 2014;19:762–73. https://doi.org/10.1038/mp.2014.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10:40–68. https://doi.org/10.1038/sj.mp.4001558. image 45

    Article  CAS  PubMed  Google Scholar 

  21. Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ. Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol. 2009;12:45–60. https://doi.org/10.1017/S1461145708009085

    Article  CAS  PubMed  Google Scholar 

  22. Ballard TM, et al. The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology (Berlin). 2005;179:218–29. https://doi.org/10.1007/s00213-005-2211-9

    Article  CAS  Google Scholar 

  23. Lea PMt, Faden AI. Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev. 2006;12:149–66. https://doi.org/10.1111/j.1527-3458.2006.00149.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ayala JE, et al. mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning. Neuropsychopharmacology. 2009;34:2057–71. https://doi.org/10.1038/npp.2009.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pollard M, Bartolome JM, Conn PJ, Steckler T, Shaban H. Modulation of neuronal microcircuit activities within the medial prefrontal cortex by mGluR5 positive allosteric modulator. J Psychopharmacol. 2014;28:935–46. https://doi.org/10.1177/0269881114542856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rook JM, et al. Biased mGlu5-positive allosteric modulators provide in vivo efficacy without potentiating mGlu5 modulation of NMDAR currents. Neuron. 2015;86:1029–40. https://doi.org/10.1016/j.neuron.2015.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta DS, et al. Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse. 2005;57:123–31. https://doi.org/10.1002/syn.20164

    Article  CAS  PubMed  Google Scholar 

  28. Matosin N, et al. Alterations of mGluR5 and its endogenous regulators Norbin, Tamalin and Preso1 in schizophrenia: towards a model of mGluR5 dysregulation. Acta Neuropathol. 2015;130:119–29. https://doi.org/10.1007/s00401-015-1411-6

    Article  CAS  PubMed  Google Scholar 

  29. Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry. 2000;47:22–28.

    Article  CAS  Google Scholar 

  30. Banerjee A, et al. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry. 2015;20:1091–1100. https://doi.org/10.1038/mp.2014.115

    Article  CAS  PubMed  Google Scholar 

  31. Hahn CG, et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med. 2006;12:824–8. https://doi.org/10.1038/nm1418

    Article  CAS  PubMed  Google Scholar 

  32. Bikbaev A, et al. MGluR5 mediates the interaction between late-LTP, network activity, and learning. PLoS ONE. 2008;3:e2155 https://doi.org/10.1371/journal.pone.0002155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGuire JL, et al. Abnormalities of signal transduction networks in chronic schizophrenia. NPJ Schizophr. 2017;3:30 https://doi.org/10.1038/s41537-017-0032-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McGuire JL, et al. Altered serine/threonine kinase activity in schizophrenia. Brain Res. 2014;1568:42–54. https://doi.org/10.1016/j.brainres.2014.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dhami GK, Ferguson SS. Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther. 2006;111:260–71. https://doi.org/10.1016/j.pharmthera.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  36. Enz R. Metabotropic glutamate receptors and interacting proteins: evolving drug targets. Curr Drug Targets. 2012;13:145–56.

    Article  CAS  Google Scholar 

  37. Wang H, et al. Norbin is an endogenous regulator of metabotropic glutamate receptor 5 signaling. Science. 2009;326:1554–7. https://doi.org/10.1126/science.1178496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kitano J, et al. Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci. 2002;22:1280–9.

    Article  CAS  Google Scholar 

  39. Hu JH, et al. Preso1 dynamically regulates group I metabotropic glutamate receptors. Nat Neurosci. 2012;15:836–44. https://doi.org/10.1038/nn.3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saugstad JA, Marino MJ, Folk JA, Hepler JR, Conn PJ. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci. 1998;18:905–13.

    Article  CAS  Google Scholar 

  41. Attucci S, Carla V, Mannaioni G, Moroni F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol. 2001;132:799–806. https://doi.org/10.1038/sj.bjp.0703904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fowler SW, et al. Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats. Neurobiol Learn Mem. 2011;95:73–79. https://doi.org/10.1016/j.nlm.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  43. Gastambide F, Gilmour G, Robbins TW, Tricklebank MD. The mGlu(5) positive allosteric modulator LSN2463359 differentially modulates motor, instrumental and cognitive effects of NMDA receptor antagonists in the rat. Neuropharmacology. 2013;64:240–7. https://doi.org/10.1016/j.neuropharm.2012.07.039

    Article  CAS  PubMed  Google Scholar 

  44. Homayoun H, Moghaddam B. Group 5 metabotropic glutamate receptors: role in modulating cortical activity and relevance to cognition. Eur J Pharmacol. 2010;639:33–39. https://doi.org/10.1016/j.ejphar.2009.12.042

    Article  CAS  PubMed  Google Scholar 

  45. Novitskaya YA, Dravolina OA, Zvartau EE, Danysz W, Bespalov AY. Interaction of blockers of ionotropic NMDA receptors and metabotropic glutamate receptors in a working memory test in rats. Neurosci Behav Physiol. 2010;40:807–11. https://doi.org/10.1007/s11055-010-9330-4

    Article  CAS  PubMed  Google Scholar 

  46. Challiss RA, Mistry R, Gray DW, Nahorski SR. Modulatory effects of NMDA on phosphoinositide responses evoked by the metabotropic glutamate receptor agonist 1S,3R-ACPD in neonatal rat cerebral cortex. Br J Pharmacol. 1994;112:231–9.

    Article  CAS  Google Scholar 

  47. Alagarsamy S, et al. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology. 2005;49 Suppl 1:135–45. https://doi.org/10.1016/j.neuropharm.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  48. Hahn CG, et al. The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS ONE. 2009;4:e5251 https://doi.org/10.1371/journal.pone.0005251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Connor JA, Muly EC, Arnold SE, Hemby SE. AMPA receptor subunit and splice variant expression in the DLPFC of schizophrenic subjects and rhesus monkeys chronically administered antipsychotic drugs. Schizophr Res. 2007;90:28–40. https://doi.org/10.1016/j.schres.2006.10.004

    Article  PubMed  Google Scholar 

  50. Fromer M, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53. https://doi.org/10.1038/nn.4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mao LM, Wang JQ. Tyrosine phosphorylation of glutamate receptors by non-receptor tyrosine kinases: roles in depression-like behavior. Neurotransmitter (Houst) 2016;3:pii:e1118.

  52. Orlando LR, Dunah AW, Standaert DG, Young AB. Tyrosine phosphorylation of the metabotropic glutamate receptor mGluR5 in striatal neurons. Neuropharmacology. 2002;43:161–73.

    Article  CAS  Google Scholar 

  53. Wang H, Nong Y, Bazan F, Greengard P, Flajolet M. Norbin: A promising central nervous system regulator. Commun Integr Biol. 2010;3:487–90. https://doi.org/10.4161/cib.3.6.12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, et al. Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci. Eur J Hum Genet. 2018;26:265–74. https://doi.org/10.1038/s41431-017-0041-y

    Article  CAS  PubMed  Google Scholar 

  55. Newell KA, Matosin N. Rethinking metabotropic glutamate receptor 5 pathological findings in psychiatric disorders: implications for the future of novel therapeutics. BMC Psychiatry. 2014;14:23 https://doi.org/10.1186/1471-244X-14-23

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res. 1998;56:207–17.

    Article  CAS  Google Scholar 

  57. Matosin N, et al. Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics. J Psychiatry Neurosci. 2014;39:407–16.

    Article  Google Scholar 

  58. Matosin N, et al. Metabotropic glutamate receptor 5, and its trafficking molecules Norbin and Tamalin, are increased in the CA1 hippocampal region of subjects with schizophrenia. Schizophr Res. 2015;166:212–8. https://doi.org/10.1016/j.schres.2015.05.001

    Article  PubMed  Google Scholar 

  59. Wang H, et al. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice. Proc Natl Acad Sci USA. 2015;112:9745–50. https://doi.org/10.1073/pnas.1510291112

    Article  CAS  PubMed  Google Scholar 

  60. Das SS, Banker GA. The role of protein interaction motifs in regulating the polarity and clustering of the metabotropic glutamate receptor mGluR1a. J Neurosci. 2006;26:8115–25. https://doi.org/10.1523/JNEUROSCI.1015-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Radulovic J, Tronson NC. Preso1, mGluR5 and the machinery of pain. Nat Neurosci. 2012;15:805–7. https://doi.org/10.1038/nn.3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dai SH, et al. Activation of mGluR5 attenuates NMDA-induced neurotoxicity through disruption of the NMDAR-PSD-95 complex and preservation of mitochondrial function in differentiated PC12 cells. Int J Mol Sci. 2014;15:10892–907. 10.3390/ijms150610892.

Download references

Acknowledgements

We express most heartfelt gratitude to the donors of postmortem brain tissues and their family members. This project was supported by RO1-MH075916 and P50-MH096891 (CH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Gyu Hahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., MacDonald, M.L., Borgmann-Winter, K.E. et al. mGluR5 hypofunction is integral to glutamatergic dysregulation in schizophrenia. Mol Psychiatry 25, 750–760 (2020). https://doi.org/10.1038/s41380-018-0234-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0234-y

  • Springer Nature Limited

This article is cited by

Navigation