Skip to main content

Advertisement

Log in

ACUTE MYELOID LEUKEMIA

Pharmacological GLUT3 salvage augments the efficacy of vitamin C-induced TET2 restoration in acute myeloid leukemia

  • Article
  • Published:
Leukemia Submit manuscript

Abstract

Vitamin C has been demonstrated to regulate hematopoietic stem cell frequencies and leukemogenesis by augmenting and restoring Ten-Eleven Translocation-2 (TET2) function, potentially acting as a promising adjunctive therapeutic agent for leukemia. However, glucose transporter 3 (GLUT3) deficiency in acute myeloid leukemia (AML) impedes vitamin C uptake and abolishes the clinical benefit of vitamin C. In this study, we aimed to investigate the therapeutic value of GLUT3 restoration in AML. In vitro GLUT3 restoration was conducted with the transduction of GLUT3-overexpressing lentivirus or the pharmacological salvage with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) treatment to OCI-AML3, a naturally GLUT3-deficient AML cell line. The effects of GLUT3 salvage were further confirmed in patient-derived primary AML cells. Upregulation of GLUT3 expression made AML cells successfully augment TET2 activity and enhanced the vitamin C-induced anti-leukemic effect. Pharmacological GLUT3 salvage has the potential to overcome GLUT3 deficiency in AML and improves the antileukemic effect of vitamin C treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: GLUT3 salvage augmented the efficacy of vitamin C treatment.
Fig. 2: GLUT3 salvage with vitamin C treatment altered the gene expression landscape of OCI-AML3 cells to a vitamin C-responsive profile.
Fig. 3: AICAR pharmacologically turns on GLUT3 expression.
Fig. 4: Pharmacological GLUT3 salvage using AICAR augmented the efficacy of vitamin C treatment.
Fig. 5: Upregulation of GLUT3 was the primary target of AICAR.
Fig. 6: AICAR pharmacologically salvages GLUT3 expression in patient-derived primary AML blast cells.
Fig. 7: Pharmacological GLUT3 salvage augments the efficacy of vitamin C-induced TET2 restoration in AML.

Similar content being viewed by others

Data availability

The RNA-seq datasets generated and analyzed during the current study are available from the [Gene Expression Omnibus, GSE216576] repository.

References

  1. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med. 2015;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  Google Scholar 

  5. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46:166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agathocleous M, Meacham CE, Burgess RJ, Piskounova E, Zhao Z, Crane GM, et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature. 2017;549:476–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu M, Ohtani H, Zhou W, Orskov AD, Charlet J, Zhang YW, et al. Vitamin C increases viral mimicry induced by 5-aza-2’-deoxycytidine. Proc Natl Acad Sci USA. 2016;113:10238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ottone T, Faraoni I, Fucci G, Divona M, Travaglini S, De Bellis E, et al. Vitamin C deficiency in patients with acute myeloid leukemia. Front Oncol. 2022;12:890344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schonberger K, Cabezas-Wallscheid N. Vitamin C: C-ing a new way to fight leukemia. Cell Stem Cell. 2017;21:561–3.

    Article  PubMed  Google Scholar 

  11. Aldoss I, Mark L, Vrona J, Ramezani L, Weitz I, Mohrbacher AM, et al. Adding ascorbic acid to arsenic trioxide produces limited benefit in patients with acute myeloid leukemia excluding acute promyelocytic leukemia. Ann Hematol. 2014;93:1839–43.

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Hong J, Han H, Park J, Kim D, Park H, et al. Decreased vitamin C uptake mediated by SLC2A3 promotes leukaemia progression and impedes TET2 restoration. Br J Cancer. 2020;122:1445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  PubMed  Google Scholar 

  14. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, et al. The soft agar colony formation assay. J Vis Exp. 2014:e51998.

  15. Tokuyama M, Kong Y, Song E, Jayewickreme T, Kang I, Iwasaki A. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc Natl Acad Sci USA. 2018;115:12565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, Zhao C, et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc. 2013;135:10396–403.

    Article  CAS  PubMed  Google Scholar 

  18. Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH, Wang J, et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell. 2017;170:1079–95.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith-Diaz CC, Magon NJ, McKenzie JL, Hampton MB, Vissers MCM, Das AB. Ascorbate inhibits proliferation and promotes myeloid differentiation in TP53-mutant leukemia. Front Oncol. 2021;11:709543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brabson JP, Leesang T, Yap YS, Wang J, Lam MQ, Fang B, et al. Oxidized mC modulates synthetic lethality to PARP inhibitors for the treatment of leukemia. Cell Rep. 2023;42:112027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, et al. Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell. 2016;30:779–91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Ravin SS, Wu X, Moir S, Anaya-O'Brien S, Kwatemaa N, Littel P, et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med. 2016;8:335ra57.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dai W, Xu Y, Mo S, Li Q, Yu J, Wang R, et al. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies. Signal Transduct Target Ther. 2020;5:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dosedel M, Jirkovsky E, Macakova K, Krcmova LK, Javorska L, Pourova J, et al. Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 2021;13:615.

  25. Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood. 1994;84:1628–34.

    Article  CAS  PubMed  Google Scholar 

  26. Carita AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR. Vitamin C: one compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine. 2020;24:102117.

    Article  CAS  PubMed  Google Scholar 

  27. Halliwell B. Vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res. 1996;25:439–54.

    Article  CAS  PubMed  Google Scholar 

  28. Visnjic D, Lalic H, Dembitz V, Tomic B, Smoljo T. AICAr, a widely used AMPK activator with important AMPK-independent effects: a systematic review. Cells. 2021;10:1095.

  29. Van Den Neste E, Cazin B, Janssens A, Gonzalez-Barca E, Terol MJ, Levy V, et al. Acadesine for patients with relapsed/refractory chronic lymphocytic leukemia (CLL): a multicenter phase I/II study. Cancer Chemother Pharm. 2013;71:581–91.

    Article  Google Scholar 

  30. Cluzeau T, Furstoss N, Savy C, El Manaa W, Zerhouni M, Blot L, et al. Acadesine circumvents azacitidine resistance in myelodysplastic syndrome and acute myeloid leukemia. Int J Mol Sci. 2019;21:164.

  31. Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer. 2022;1877:188785.

    Article  CAS  PubMed  Google Scholar 

  32. Wu D, Hu D, Chen H, Shi G, Fetahu IS, Wu F, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 2018;559:637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; grant no. NRF-2020R1C1C1011110).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JH and JL. Development of methodology: JL and SM. Acquisition of data: JL and SM. Analysis and interpretation of data: JL Writing, review, and/or revision of the manuscript: JL, SP, MK, and JH. Administrative, technical, or material support: NJ and SM. Study supervision: JH, YK, DY-S, JM-B, and SS-Y. Performed research: JL, JP, SM, NJ, DK, and EP.

Corresponding author

Correspondence to Junshik Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Min, S., Kim, D. et al. Pharmacological GLUT3 salvage augments the efficacy of vitamin C-induced TET2 restoration in acute myeloid leukemia. Leukemia 37, 1638–1648 (2023). https://doi.org/10.1038/s41375-023-01954-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01954-5

  • Springer Nature Limited

Navigation