Skip to main content
Log in

Dilemmas in parenteral glucose delivery and approach to glucose monitoring and interpretation in the neonate

  • Perspective
  • Published:
Journal of Perinatology Submit manuscript

Abstract

Glucose control continues to be challenging for intensivists, in particular in high-risk neonates. Many factors play a role in glucose regulation including intrinsic and extrinsic factors. Optimal targets for euglycemia are debatable with uncertain short and long-term effects. Glucose measurement technology has continued to advance over the past decade; unfortunately, the availability of these advanced devices outside of research continues to be problematic. Treatment approaches should be individualized depending on etiology, symptoms, and neonatal conditions. Glucose infusions should be titrated based upon variations in organ glucose uptake, co-morbidities and postnatal development. In this article we summarize the most common dilemmas encountered in the NICU: ranges for euglycemia, physiological differences, approach for glucose measurements, monitoring and best strategies to control parenteral glucose delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thornton PS, Stanley CA, De Leon DD, Harris D, Haymond MW, Hussain K, et al. Recommendations from the Pediatric Endocrine Society for Evaluation and Management of Persistent Hypoglycemia in Neonates, Infants, and Children. J Pediatr. 2015;167:238–45.

    Article  PubMed  Google Scholar 

  2. Harris DL, Weston PJ, Gamble GD, Harding JE. Glucose Profiles in Healthy Term Infants in the First 5 Days: The Glucose in Well Babies (GLOW) Study. J Pediatr. 2020;223:34–41.e4.

    Article  CAS  PubMed  Google Scholar 

  3. Adamkin DH. Committee on fetus and newborn. Postnatal glucose homeostasis in late-preterm and term infants. Pediatrics. 2011;127:575–9.

    Article  PubMed  Google Scholar 

  4. Sinclair JC. Approaches to the definition of neonatal hypoglycemia. Acta Paediatr Jpn Overseas Ed. 1997;39:S17–20.

    Google Scholar 

  5. Rozance PJ, Hay WW. Hypoglycemia in newborn infants: features associated with adverse outcomes. Biol Neonate. 2006;90:74–86.

    Article  CAS  PubMed  Google Scholar 

  6. van Kempen AAMW, Eskes PF, Nuytemans DHGM, van der Lee JH, Dijksman LM, van Veenendaal NR, et al. Lower versus traditional treatment threshold for neonatal hypoglycemia. N. Engl J Med. 2020;382:534–44.

    Article  PubMed  Google Scholar 

  7. Zhang J, Shi W, Chen C. Neonatal glycogen storage disease Ia. Pediatr Neonatol. 2015;56:66–7.

    Article  PubMed  Google Scholar 

  8. Blanco CL, Kim J. Neonatal glucose homeostasis. Clin Perinatol. 2022;49:393–404.

    Article  PubMed  Google Scholar 

  9. Beardsall K. Measurement of glucose levels in the newborn. Early Hum Dev. 2010;86:263–7.

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Sievenpiper JL, de Souza RJ, Thomaz M, Blatz S, Grey V, et al. Hematocrit correction does not improve glucose monitor accuracy in the assessment of neonatal hypoglycemia. Clin Chem Lab Med. 2013;51:1627–35.

    Article  CAS  PubMed  Google Scholar 

  11. Balion C, Grey V, Ismaila A, Blatz S, Seidlitz W. Screening for hypoglycemia at the bedside in the neonatal intensive care unit (NICU) with the Abbott PCx glucose meter. BMC Pediatr. 2006;6:28.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cengiz E, Tamborlane WV. A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol Ther. 2009;11:S11–16.

    Article  PubMed  Google Scholar 

  13. Tang Z, Lee JH, Louie RF, Kost GJ. Effects of different hematocrit levels on glucose measurements with handheld meters for point-of-care testing. Arch Pathol Lab Med. 2000;124:1135–40.

    Article  CAS  PubMed  Google Scholar 

  14. Ho HT, Yeung WKY, Young BWY. Evaluation of “point of care” devices in the measurement of low blood glucose in neonatal practice. Arch Dis Child Fetal Neonatal Ed. 2004;89:F356–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. St-Louis P, Ethier J. An evaluation of three glucose meter systems and their performance in relation to criteria of acceptability for neonatal specimens. Clin Chim Acta. 2002;322:139–48.

    Article  CAS  PubMed  Google Scholar 

  16. Woo HC, Tolosa L, El-Metwally D, Viscardi RM. Glucose monitoring in neonates: need for accurate and non-invasive methods. Arch Dis Child Fetal Neonatal Ed. 2014;99:F153–157.

    Article  PubMed  Google Scholar 

  17. Jangam SR, Hayter G, Dunn TC. Impact of glucose measurement processing delays on clinical accuracy and relevance. J Diabetes Sci Technol. 2013;7:660–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Howanitz PJ, Cembrowski GS, Steindel SJ, Long TA. Physician goals and laboratory test turnaround times. A College of American Pathologists Q-Probes study of 2763 clinicians and 722 institutions. Arch Pathol Lab Med. 1993;117:22–8.

    CAS  PubMed  Google Scholar 

  19. Kilgore ML, Steindel SJ, Smith JA. Evaluating stat testing options in an academic health center: therapeutic turnaround time and staff satisfaction. Clin Chem. 1998;44:1597–603.

    Article  CAS  PubMed  Google Scholar 

  20. Lee-Lewandrowski E, Corboy D, Lewandrowski K, Sinclair J, McDermot S, Benzer TI. Implementation of a point-of-care satellite laboratory in the emergency department of an academic medical center. Impact on test turnaround time and patient emergency department length of stay. Arch Pathol Lab Med. 2003;127:456–60.

    Article  PubMed  Google Scholar 

  21. Winkelman JW, Wybenga DR, Tanasijevic MJ. The fiscal consequences of central vs distributed testing of glucose. Clin Chem. 1994;40:1628–30.

    Article  CAS  PubMed  Google Scholar 

  22. McKinlay CJD, Chase JG, Dickson J, Harris DL, Alsweiler JM, Harding JE. Continuous glucose monitoring in neonates: a review. Matern Health Neonatol Perinatol. 2017;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shah R, McKinlay CJD, Harding JE. Neonatal hypoglycemia: continuous glucose monitoring. Curr Opin Pediatr. 2018;30:204–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saw HP, Yao NW, Chiu CD, Chen JY. The value of real-time continuous glucose monitoring in premature infants of diabetic mothers. PloS One. 2017;12:e0186486.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Phillip M, Battelino T, Atlas E, Kordonouri O, Bratina N, Miller S, et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N. Engl J Med. 2013;368:824–33.

    Article  CAS  PubMed  Google Scholar 

  26. Beardsall K, Thomson L, Guy C, Bond S, Allison A, Pantaleo B, et al. Continuous glucose monitoring in extremely preterm infants in intensive care: the REACT RCT and pilot study of ‘closed-loop’ technology. Southampton (UK): NIHR Journals Library. 2021. Accessed 8 Jul 2022. (Efficacy and Mechanism Evaluation). http://www.ncbi.nlm.nih.gov/books/NBK574813/.

  27. Uettwiller F, Chemin A, Bonnemaison E, Favrais G, Saliba E, Labarthe F. Real-time continuous glucose monitoring reduces the duration of hypoglycemia episodes: a randomized trial in very low birth weight neonates. PloS One. 2015;10:e0116255.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Galderisi A, Facchinetti A, Steil GM, Ortiz-Rubio P, Cavallin F, Tamborlane WV, et al. Continuous glucose monitoring in very preterm infants: a randomized controlled trial. Pediatrics. 2017;140:e20171162.

    Article  PubMed  Google Scholar 

  29. Thomson L, Elleri D, Bond S, Howlett J, Dunger DB, Beardsall K. Targeting glucose control in preterm infants: pilot studies of continuous glucose monitoring. Arch Dis Child Fetal Neonatal Ed. 2019;104:F353–9.

    PubMed  Google Scholar 

  30. McKinlay CJD, Alsweiler JM, Anstice NS, Burakevych N, Chakraborty A, Chase JG, et al. Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. JAMA Pediatr. 2017;171:972–83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lilien LD, Pildes RS, Srinivasan G, Voora S, Yeh TF. Treatment of neonatal hypoglycemia with minibolus and intraveous glucose infusion. J Pediatr. 1980;97:295–8.

    Article  CAS  PubMed  Google Scholar 

  32. McGill-Vargas L, Gastaldelli A, Liang H, Anzueto Guerra D, Johnson-Pais T, Seidner S, et al. Hepatic Insulin resistance and altered gluconeogenic pathway in premature baboons. Endocrinology. 2017;158:1140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blanco CL, McGill-Vargas LL, Gastaldelli A, Seidner SR, McCurnin DC, Leland MM, et al. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons. Endocrinology. 2015;156:813–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blanco CL, Baillargeon JG, Morrison RL, Gong AK. Hyperglycemia in extremely low birth weight infants in a predominantly Hispanic population and related morbidities. J Perinatol J Calif Perinat Assoc. 2006;26:737–41.

    CAS  Google Scholar 

  35. Alexandrou G, Skiöld B, Karlén J, Tessma MK, Norman M, Adén U, et al. Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants. Pediatrics. 2010;125:e584–591.

    Article  PubMed  Google Scholar 

  36. Callaway DA, McGill-Vargas LL, Quinn A, Jordan JL, Winter LA, Anzueto D, et al. Prematurity disrupts glomeruli development, whereas prematurity and hyperglycemia lead to altered nephron maturation and increased oxidative stress in newborn baboons. Pediatr Res. 2018;83:702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kermorvant-Duchemin E, Pinel AC, Lavalette S, Lenne D, Raoul W, Calippe B, et al. Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina. PloS One. 2013;8:e79545.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ramel S, Rao R. Hyperglycemia in extremely preterm infants. NeoReviews. 2020;21:e89–97.

    Article  PubMed  Google Scholar 

  39. Burgess L, Morgan C, Mayes K, Tan M. Plasma arginine levels and blood glucose control in very preterm infants receiving 2 different parenteral nutrition regimens. JPEN J Parenter Enter Nutr. 2014;38:243–53.

    Article  Google Scholar 

  40. Chong E, Yosypiv IV. Developmental programming of hypertension and kidney disease. Int J Nephrol. 2012;2012:1–15.

    Article  Google Scholar 

  41. Quinn AR, Blanco CL, Perego C, Finzi G, La Rosa S, Capella C, et al. The ontogeny of the endocrine pancreas in the fetal/newborn baboon. J Endocrinol. 2012;214:289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chertok IRA, Raz I, Shoham I, Haddad H, Wiznitzer A. Effects of early breastfeeding on neonatal glucose levels of term infants born to women with gestational diabetes. J Hum Nutr Diet. 2009;22:166–9.

    Article  CAS  PubMed  Google Scholar 

  43. Harris DL, Gamble GD, Weston PJ, Harding JE. What happens to blood glucose concentrations after oral treatment for neonatal hypoglycemia? J Pediatr. 2017;190:136–41.

    Article  CAS  PubMed  Google Scholar 

  44. Maayan-Metzger A, Schushan-Eisen I, Lubin D, Moran O, Kuint J, Mazkereth R. Delivery room breastfeeding for prevention of hypoglycaemia in infants of diabetic mothers. Fetal Pediatr Pathol. 2014;33:23–8.

    Article  PubMed  Google Scholar 

  45. Pierro A, Nah SA. Surgical management of congenital hyperinsulinism of infancy. Semin Pediatr Surg. 2011;20:50–3.

    Article  PubMed  Google Scholar 

  46. Hegarty JE, Harding JE, Gamble GD, Crowther CA, Edlin R, Alsweiler JM. Prophylactic Oral Dextrose Gel for Newborn Babies at Risk of Neonatal Hypoglycaemia: A Randomised Controlled Dose-Finding Trial (the Pre-hPOD Study). PLoS Med. 2016;13:e1002155.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Coors SM, Cousin JJ, Hagan JL, Kaiser JR. Prophylactic dextrose gel does not prevent neonatal hypoglycemia: a quasi-experimental pilot study. J Pediatr. 2018;198:156–61.

    Article  CAS  PubMed  Google Scholar 

  48. Harding JE, Hegarty JE, Crowther CA, Edlin RP, Gamble GD, Alsweiler JM, et al. Evaluation of oral dextrose gel for prevention of neonatal hypoglycemia (hPOD): a multicenter, double-blind randomized controlled trial. PLoS Med. 2021;18:e1003411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

All data utilized in this review has been published and funding sources are detailed in each manuscript referenced.

Author information

Authors and Affiliations

Authors

Contributions

CB, VS, SR and CM conceptualized and designed the study. Drafting of the manuscript was done by CB, VS. Critical revision of the manuscript for important intellectual content was done by all authors.

Corresponding author

Correspondence to Cynthia L. Blanco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, C.L., Smith, V., Ramel, S.E. et al. Dilemmas in parenteral glucose delivery and approach to glucose monitoring and interpretation in the neonate. J Perinatol 43, 1200–1205 (2023). https://doi.org/10.1038/s41372-023-01640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01640-5

  • Springer Nature America, Inc.

Navigation