Skip to main content

Advertisement

Log in

Optimizing respiratory management in preterm infants: a review of adjuvant pharmacotherapies

  • Review Article
  • Published:
Journal of Perinatology Submit manuscript

Abstract

Adjuvant respiratory therapies in preterm neonates aim to reduce long-term morbidities and mortality. Commonly utilized therapies include caffeine, systemic glucocorticosteroids, inhaled steroids, inhaled bronchodilators, and diuretics. This review discusses the available literature that supports some of these practices and points out where clinical practices are not corroborated by evidence. Therapies with no proven clinical benefit must be weighed against potential adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The mechanisms and clinical effects of caffeine therapy in preterm neonates.
Fig. 2: The mechanisms and clinical effects of postnatal steroid therapy in preterm neonates.
Fig. 3: Summary of clinical studies utilizing the different dosing regimens of dexamethasone or hydrocortisone and the relative impact on pulmonary and neurodevelopmental outcomes.
Fig. 4: Schematic representation of delivery of corticosteroids via nebulization versus direct endotracheal instillation using surfactant as a vehicle.

Similar content being viewed by others

References

  1. Donda K, Vijayakanthi N, Dapaah-Siakwan F, Bhatt P, Rastogi D, Rastogi S. Trends in epidemiology and outcomes of respiratory distress syndrome in the United States. Pediatr Pulmonol. 2019;54:405–14. https://doi.org/10.1002/ppul.24241.

    Article  PubMed  Google Scholar 

  2. Reuter S, Moser C, Baack M. Respiratory distress in the newborn. Pediatr Rev. 2014;35:417–28. https://doi.org/10.1542/pir.35-10-417. quiz 429.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thygesen SK, Olsen M, Østergaard JR, Sørensen HT. Respiratory distress syndrome in moderately late and late preterm infants and risk of cerebral palsy: a population-based cohort study. BMJ Open. 2016;6:e011643. https://doi.org/10.1136/bmjopen-2016-011643.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thygesen SK, Olsen M, Pedersen L, Henderson VW, Østergaard JR, Sørensen HT. Respiratory distress syndrome in preterm infants and risk of epilepsy in a Danish cohort. Eur J Epidemiol. 2018;33:313–21. https://doi.org/10.1007/s10654-017-0308-1.

    Article  PubMed  Google Scholar 

  5. Halliday HL. History of surfactant from 1980. Biol Neonate. 2005;87:317–22. https://doi.org/10.1159/000084879.

    Article  CAS  PubMed  Google Scholar 

  6. Lee K, Khoshnood B, Wall SN, Chang Y, Hsieh HL, Singh JK. Trend in mortality from respiratory distress syndrome in the United States, 1970-95. J Pediatr. 1999;134:434–40. https://doi.org/10.1016/s0022-3476(99)70200-3.

    Article  CAS  PubMed  Google Scholar 

  7. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50:515–25.

    Article  CAS  PubMed  Google Scholar 

  8. Carlo WA, McDonald SA, Fanaroff AA, Vohr BR, Stoll BJ, Ehrenzkranz RA, et al. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks’ gestation. JAMA. 2011;306:2348–58. https://doi.org/10.1001/jama.2011.1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Isayama T, Iwami H, McDonald S, Beyene J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: a systematic review and meta-analysis. JAMA. 2016;316:611–24. https://doi.org/10.1001/jama.2016.10708.

    Article  PubMed  Google Scholar 

  10. Twilhaar ES, Wade RM, de Kieviet JF, van Goudoever JB, van Elburg RM, Oosterlaan J. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. JAMA Pediatr. 2018;172:361–7. https://doi.org/10.1001/jamapediatrics.2017.5323.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hsieh EM, Hornik CP, Clark RH, Laughon MM, Benjamin DK, Smith PB, et al. Medication use in the neonatal intensive care unit. Am J Perinatol. 2014;31:811–21. https://doi.org/10.1055/s-0033-1361933.

    Article  PubMed  Google Scholar 

  12. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR. Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics. 2006;117:1979–87. https://doi.org/10.1542/peds.2005-1707.

    Article  PubMed  Google Scholar 

  13. Dukhovny D, Lorch SA, Schmidt B, Doyle LW, Kok JH, Roberts RS, et al. Economic evaluation of caffeine for apnea of prematurity. Pediatrics. 2011;127:e146–55. https://doi.org/10.1542/peds.2010-1014.

    Article  PubMed  Google Scholar 

  14. Abdel-Hady H, Nasef N, Shabaan AE, Nour I. Caffeine therapy in preterm infants. World J Clin Pediatr. 2015;4:81–93. https://doi.org/10.5409/wjcp.v4.i4.81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dekker J, Hooper SB, van Vonderen JJ, Witlox RSGM, Lopriore E, Te Pas AB. Caffeine to improve breathing effort of preterm infants at birth: a randomized controlled trial. Pediatr Res. 2017;82:290–6. https://doi.org/10.1038/pr.2017.45.

    Article  CAS  PubMed  Google Scholar 

  16. Fehrholz M, Bersani I, Kramer BW, Speer CP, Kunzmann S. Synergistic effect of caffeine and glucocorticoids on expression of surfactant protein B (SP-B) mRNA. PLoS One. 2012;7:e51575. https://doi.org/10.1371/journal.pone.0051575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Köroğlu OA, MacFarlane PM, Balan KV, Zenebe WJ, Jafri A, Martin RJ, et al. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology. 2014;106:235–40. https://doi.org/10.1159/000363217.

    Article  CAS  PubMed  Google Scholar 

  18. Mürner-Lavanchy IM, Doyle LW, Schmidt B, Roberts RS, Asztalos EV, Costantini L, et al. Neurobehavioral outcomes 11 years after neonatal caffeine therapy for apnea of prematurity. Pediatrics. 2018;141:e20174047. https://doi.org/10.1542/peds.2017-4047.

  19. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N. Engl J Med. 2007;357:1893–902. https://doi.org/10.1056/NEJMoa073679.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307:275–82. https://doi.org/10.1001/jama.2011.2024.

    Article  CAS  PubMed  Google Scholar 

  21. Katheria AC, Sauberan JB, Akotia D, Rich W, Durham J, Finer NN. A pilot randomized controlled trial of early versus routine caffeine in extremely premature infants. Am J Perinatol. 2015;32:879–86. https://doi.org/10.1055/s-0034-1543981.

    Article  PubMed  Google Scholar 

  22. Soloveychik V, Bin-Nun A, Ionchev A, Sriram S, Meadow W. Acute hemodynamic effects of caffeine administration in premature infants. J Perinatol. 2009;29:205–8. https://doi.org/10.1038/jp.2008.193.

    Article  CAS  PubMed  Google Scholar 

  23. Patel RM, Leong T, Carlton DP, Vyas-Read S. Early caffeine therapy and clinical outcomes in extremely preterm infants. J Perinatol. 2013;33:134–40. https://doi.org/10.1038/jp.2012.52.

    Article  CAS  PubMed  Google Scholar 

  24. Scanlon JE, Chin KC, Morgan ME, Durbin GM, Hale KA, Brown SS. Caffeine or theophylline for neonatal apnoea? Arch Dis Child. 1992;67:425–8. https://doi.org/10.1136/adc.67.4_spec_no.425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erenberg A, Leff RD, Haack DG, Mosdell KW, Hicks GM, Wynne BA. Caffeine citrate for the treatment of apnea of prematurity: a double-blind, placebo-controlled study. Pharmacotherapy. 2000;20:644–52.

    Article  CAS  Google Scholar 

  26. Bauer J, Maier K, Linderkamp O, Hentschel R. Effect of caffeine on oxygen consumption and metabolic rate in very low birth weight infants with idiopathic apnea. Pediatrics. 2001;107:660–3. https://doi.org/10.1542/peds.107.4.660.

    Article  CAS  PubMed  Google Scholar 

  27. Gleason JL, Tekola-Ayele F, Sundaram R, Hinkle SN, Vafai Y, Buck Louis GM, et al. Association between maternal caffeine consumption and metabolism and neonatal anthropometry: a secondary analysis of the NICHD fetal growth studies-singletons. JAMA Netw Open. 2021;4:e213238. https://doi.org/10.1001/jamanetworkopen.2021.3238.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mannucci C, Attard E, Calapai F, Facchinetti F, D’Anna R, Vannacci A, et al. Coffee intake during pregnancy and neonatal low birth weight: data from a multicenter Italian cross sectional study. J Matern Fetal Neonatal Med. 2020;18:1–5. https://doi.org/10.1080/14767058.2020.1849120.

  29. Curzi-Dascalova L, Aujard Y, Gaultier C, Rajguru M. Sleep organization is unaffected by caffeine in premature infants. J Pediatr. 2002;140:766–71. https://doi.org/10.1067/mpd.2002.124383.

    Article  PubMed  Google Scholar 

  30. Hayes MJ, Akilesh MR, Fukumizu M, Gilles AA, Sallinen BA, Troese M, et al. Apneic preterms and methylxanthines: arousal deficits, sleep fragmentation and suppressed spontaneous movements. J Perinatol. 2007;27:782–9. https://doi.org/10.1038/sj.jp.7211820.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N. Engl J Med. 2006;354:2112–21. https://doi.org/10.1056/NEJMoa054065.

    Article  CAS  PubMed  Google Scholar 

  32. Dobson NR, Patel RM, Smith PB, Kuehn DR, Clark J, Vyas-Read S, et al. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J Pediatr. 2014;164:992–98.e3. https://doi.org/10.1016/j.jpeds.2013.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel RM, Zimmerman K, Carlton DP, Clark R, Benjamin DK, Smith PB. Early caffeine prophylaxis and risk of failure of initial continuous positive airway pressure in very low birth weight infants. J Pediatr. 2017;190:108–11.e1. https://doi.org/10.1016/j.jpeds.2017.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lodha A, Seshia M, McMillan DD, Barrington K, Yang J, Lee SK, et al. Association of early caffeine administration and neonatal outcomes in very preterm neonates. JAMA Pediatr. 2015;169:33–8. https://doi.org/10.1001/jamapediatrics.2014.2223.

    Article  PubMed  Google Scholar 

  35. Kribs A, Roll C, Göpel W, Wieg C, Groneck P, Laux R, et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr. 2015;169:723–30. https://doi.org/10.1001/jamapediatrics.2015.0504.

    Article  PubMed  Google Scholar 

  36. Taha D, Kirkby S, Nawab U, Dysart KC, Genen L, Greenspan JS, et al. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. J Matern Fetal Neonatal Med. 2014;27:1698–702. https://doi.org/10.3109/14767058.2014.885941.

    Article  CAS  PubMed  Google Scholar 

  37. Amaro CM, Bello JA, Jain D, Ramnath A, D’Ugard C, Vanbuskirk S, et al. Early caffeine and weaning from mechanical ventilation in preterm infants: a randomized, placebo-controlled trial. J Pediatr. 2018;196:52–57. https://doi.org/10.1016/j.jpeds.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  38. Henderson-Smart DJ. The effect of gestational age on the incidence and duration of recurrent apnoea in newborn babies. Aust Paediatr J. 1981;17:273–6. https://doi.org/10.1111/j.1440-1754.1981.tb01957.x.

    Article  CAS  PubMed  Google Scholar 

  39. Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010;157:69–73. https://doi.org/10.1016/j.jpeds.2010.01.046.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Natarajan G, Botica ML, Thomas R, Aranda JV. Therapeutic drug monitoring for caffeine in preterm neonates: an unnecessary exercise? Pediatrics. 2007;119:936–40. https://doi.org/10.1542/peds.2006-2986.

    Article  PubMed  Google Scholar 

  41. Shah V, Wai W. Effectiveness and side effects of 2 different doses of caffeine citrate in preventing apnea in VLBW premature infants. In Hot Topics in Neonatology Conference (Washington DC, 2011).

  42. Steer PA, Flenady VJ, Shearman A, Lee TC, Tudehope DI, Charles BG. Periextubation caffeine in preterm neonates: a randomized dose response trial. J Paediatr Child Health. 2003;39:511–5. https://doi.org/10.1046/j.1440-1754.2003.00207.x.

    Article  CAS  PubMed  Google Scholar 

  43. Mohammed S, Nour I, Shabaan AE, Shouman B, Abdel-Hady H, Nasef N. High versus low-dose caffeine for apnea of prematurity: a randomized controlled trial. Eur J Pediatr. 2015;174:949–56. https://doi.org/10.1007/s00431-015-2494-8.

    Article  CAS  PubMed  Google Scholar 

  44. McPherson C, Neil JJ, Tjoeng TH, Pineda R, Inder TE. A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr Res. 2015;78:198–204. https://doi.org/10.1038/pr.2015.72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barnes P. Molecular mechanisms of corticosteroids in allergic diseases. Allergy. 2002;56:928–36.

    Article  Google Scholar 

  46. Gulino A, De Smaele E, Ferretti E. Glucocorticoids and neonatal brain injury: the hedgehog connection. J Clin Invest. 2009;119:243–6. https://doi.org/10.1172/jci38387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohlsson A, Calvert SA, Hosking M, Shennan AT. Randomized controlled trial of dexamethasone treatment in very-low-birth-weight infants with ventilator-dependent chronic lung disease. Acta Paediatr. 1992;81:751–6. https://doi.org/10.1111/j.1651-2227.1992.tb12096.x.

    Article  CAS  PubMed  Google Scholar 

  48. Romagnoli C, Zecca E, Vento G, Maggio L, Papacci P, Tortorolo G. Effect on growth of two different dexamethasone courses for preterm infants at risk of chronic lung disease. A randomized trial. Pharmacology. 1999;59:266–74. https://doi.org/10.1159/000028329.

    Article  CAS  PubMed  Google Scholar 

  49. Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment after the first week of life for bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98:289–96. https://doi.org/10.1159/000286212.

    Article  CAS  PubMed  Google Scholar 

  50. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics. 2005;115:655–61. https://doi.org/10.1542/peds.2004-1238.

    Article  PubMed  Google Scholar 

  51. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. An update on the impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk of bronchopulmonary dysplasia. J Pediatr. 2014;165:1258–60. https://doi.org/10.1016/j.jpeds.2014.07.049.

    Article  CAS  PubMed  Google Scholar 

  52. Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183:1715–22. https://doi.org/10.1164/rccm.201101-0055OC.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mammel MC, Green TP, Johnson DE, Thompson TR. Controlled trial of dexamethasone therapy in infants with bronchopulmonary dysplasia. Lancet. 1983;1(8338):1356–8. https://doi.org/10.1016/s0140-6736(83)92139-6.

    Article  CAS  PubMed  Google Scholar 

  54. Avery GB, Fletcher AB, Kaplan M, Brudno DS. Controlled trial of dexamethasone in respirator-dependent infants with bronchopulmonary dysplasia. Pediatrics. 1985;75:106–11.

    Article  CAS  PubMed  Google Scholar 

  55. O’Shea TM, Kothadia JM, Klinepeter KL, Goldstein DJ, Jackson BG, Weaver RG, et al. Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants: outcome of study participants at 1-year adjusted age. Pediatrics. Jul 1999;104(1 Pt 1):15–21. https://doi.org/10.1542/peds.104.1.15.

    Article  PubMed  Google Scholar 

  56. American Academy of Pediatrics CoFaN. Postnatal steroids. Pediatrics. 2002;109:330–8.

    Google Scholar 

  57. Garland JS, Alex CP, Pauly TH, Whitehead VL, Brand J, Winston JF, et al. A three-day course of dexamethasone therapy to prevent chronic lung disease in ventilated neonates: a randomized trial. Pediatrics. 1999;104:91–9. https://doi.org/10.1542/peds.104.1.91.

    Article  CAS  PubMed  Google Scholar 

  58. Durand M, Mendoza ME, Tantivit P, Kugelman A, McEvoy C. A randomized trial of moderately early low-dose dexamethasone therapy in very low birth weight infants: dynamic pulmonary mechanics, oxygenation, and ventilation. Pediatrics. 2002;109:262–8. https://doi.org/10.1542/peds.109.2.262.

    Article  PubMed  Google Scholar 

  59. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, Investigators DS. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: a multicenter, international, randomized, controlled trial. Pediatrics. 2006;117:75–83. https://doi.org/10.1542/peds.2004-2843.

    Article  PubMed  Google Scholar 

  60. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, Investigators DS. Outcome at 2 years of age of infants from the DART study: a multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics. 2007;119:716–21. https://doi.org/10.1542/peds.2006-2806.

    Article  PubMed  Google Scholar 

  61. Crochemore C, Lu J, Wu Y, Liposits Z, Soua N, Holsboer F, et al. Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry. 2005;10:790–8. https://doi.org/10.1038/sj.mp.4001679.

    Article  CAS  PubMed  Google Scholar 

  62. Parikh NA, Kennedy KA, Lasky RE, McDavid GE, Tyson JE. Pilot randomized trial of hydrocortisone in ventilator-dependent extremely preterm infants: effects on regional brain volumes. J Pediatr. 2013;162:685–90.e1. https://doi.org/10.1016/j.jpeds.2012.09.054.

    Article  CAS  PubMed  Google Scholar 

  63. Onland W, Cools F, Kroon A, Rademaker K, Merkus MP, Dijk PH, et al. Effect of hydrocortisone therapy initiated 7 to 14 days after birth on mortality or bronchopulmonary dysplasia among very preterm infants receiving mechanical ventilation: a randomized clinical trial. JAMA. 2019;321:354–63. https://doi.org/10.1001/jama.2018.21443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baud O, Maury L, Lebail F, Ramful D, El Moussawi F, Nicaise C, et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 2016;387:1827–36. https://doi.org/10.1016/S0140-6736(16)00202-6.

    Article  CAS  PubMed  Google Scholar 

  65. Baud O, Trousson C, Biran V, Leroy E, Mohamed D, Alberti C, et al. Association between early low-dose hydrocortisone therapy in extremely preterm neonates and neurodevelopmental outcomes at 2 years of age. JAMA. 2017;317:1329–37. https://doi.org/10.1001/jama.2017.2692.

    Article  CAS  PubMed  Google Scholar 

  66. Alison M, Tilea B, Toumazi A, Biran V, Mohamed D, Alberti C, et al. Prophylactic hydrocortisone in extremely preterm infants and brain MRI abnormality. Arch Dis Child Fetal Neonatal Ed. 2020;105:520–5. https://doi.org/10.1136/archdischild-2019-317720.

    Article  PubMed  Google Scholar 

  67. Baud O, Trousson C, Biran V, Leroy E, Mohamed D, Alberti C, et al. Two-year neurodevelopmental outcomes of extremely preterm infants treated with early hydrocortisone: treatment effect according to gestational age at birth. Arch Dis Child Fetal Neonatal Ed. 2019;104:F30–F35. https://doi.org/10.1136/archdischild-2017-313756.

    Article  PubMed  Google Scholar 

  68. Ofman G, Perez M, Farrow KN. Early low-dose hydrocortisone: is the neurodevelopment affected? J Perinatol. 2018;38:636–8. https://doi.org/10.1038/s41372-018-0086-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5:202–7. https://doi.org/10.1200/JCO.1987.5.2.202.

    Article  CAS  PubMed  Google Scholar 

  70. Cutrera R, Baraldi E, Indinnimeo L, Miraglia Del Giudice M, Piacentini G, Scaglione F, et al. Management of acute respiratory diseases in the pediatric population: the role of oral corticosteroids. Ital J Pediatr. 2017;43:31 https://doi.org/10.1186/s13052-017-0348-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Linafelter A, Cuna A, Liu C, Quigley A, Troug WE, Sampath V, et al. Extended course of prednisolone in infants with severe bronchopulmonary dysplasia. Early Hum Dev. 2019;136:1–6. https://doi.org/10.1016/j.earlhumdev.2019.06.007.

    Article  CAS  PubMed  Google Scholar 

  72. Bhandari A, Schramm CM, Kimble C, Pappagallo M, Hussain N. Effect of a short course of prednisolone in infants with oxygen-dependent bronchopulmonary dysplasia. Pediatrics. 2008;121:e344–9. https://doi.org/10.1542/peds.2006-3668.

    Article  PubMed  Google Scholar 

  73. Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for the treatment of bronchopulmonary dysplasia in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev. 2017;10:CD002057. https://doi.org/10.1002/14651858.CD002057.pub4.

    Article  PubMed  Google Scholar 

  74. Shinwell ES, Portnov I, Meerpohl JJ, Karen T, Bassler D. Inhaled corticosteroids for bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2016;138:e20162511. https://doi.org/10.1542/peds.2016-2511.

  75. Bassler D, Plavka R, Shinwell ES, Hallman M, Jarreau PH, Carnielli V, et al. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N. Engl J Med. 2015;373:1497–506. https://doi.org/10.1056/NEJMoa1501917.

    Article  CAS  PubMed  Google Scholar 

  76. Koch A, Kreutzer K, von Oldershausen G, Poets CF, Bassler D, Group NT. Inhaled glucocorticoids and pneumonia in preterm infants: post hoc results from the NEuroSIS trial. Neonatology. 2017;112:110–3. https://doi.org/10.1159/000468507.

    Article  CAS  PubMed  Google Scholar 

  77. Bassler D, Shinwell ES, Hallman M, Jarreau PH, Plavka R, Carnielli V, et al. Long-term effects of inhaled budesonide for bronchopulmonary dysplasia. N. Engl J Med. 2018;378:148–57. https://doi.org/10.1056/NEJMoa1708831.

    Article  CAS  PubMed  Google Scholar 

  78. Duijts L, van Meel ER, Moschino L, Baraldi E, Barnhoorn M, Bramer WM, et al. European Respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia. Eur Respir J. 2020;55:1900788. https://doi.org/10.1183/13993003.00788-2019.

  79. Yuksel B, Greenough A. Randomised trial of inhaled steroids in preterm infants with respiratory symptoms at follow up. Thorax. 1992;47:910–3. https://doi.org/10.1136/thx.47.11.910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pelkonen AS, Hakulinen AL, Hallman M, Turpeinen M. Effect of inhaled budesonide therapy on lung function in schoolchildren born preterm. Respir Med. 2001;95:565–70. https://doi.org/10.1053/rmed.2001.1104.

    Article  CAS  PubMed  Google Scholar 

  81. Boel L, Banerjee S, Chakraborty M. Postnatal steroids in extreme preterm infants: Intra-tracheal instillation using surfactant as a vehicle. Paediatr Respir Rev. 2018;25:78–84. https://doi.org/10.1016/j.prrv.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  82. Fajardo C, Levin D, Garcia M, Abrams D, Adamson I. Surfactant versus saline as a vehicle for corticosteroid delivery to the lungs of ventilated rabbits. Pediatr Res. 1998;43:542–7. https://doi.org/10.1203/00006450-199804000-00018.

    Article  CAS  PubMed  Google Scholar 

  83. Wang YE, Zhang H, Fan Q, Neal CR, Zuo YY. Biophysical interaction between corticosteroids and natural surfactant preparation: implications for pulmonary drug delivery using surfactant a carrier. Soft Matter. 2012;8:504–11. https://doi.org/10.1039/c1sm06444d.

    Article  CAS  PubMed  Google Scholar 

  84. Yeh TF, Chen CM, Wu SY, Husan Z, Li TC, Hsieh WS, et al. Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2016;193:86–95. https://doi.org/10.1164/rccm.201505-0861OC.

    Article  CAS  PubMed  Google Scholar 

  85. Kuo HT, Lin HC, Tsai CH, Chouc IC, Yeh TF. A follow-up study of preterm infants given budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants. J Pediatr. 2010;156:537–41. https://doi.org/10.1016/j.jpeds.2009.10.049.

    Article  CAS  PubMed  Google Scholar 

  86. Yeh T, Lin H, Chang C, Wu TS, Su BH, Li TC, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics. 2008;121:e1310–e1318.

    Article  Google Scholar 

  87. Slaughter JL, Stenger MR, Reagan PB, Jadcherla SR. Inhaled bronchodilator use for infants with bronchopulmonary dysplasia. J Perinatol. 2015;35:61–6. https://doi.org/10.1038/jp.2014.141.

    Article  CAS  PubMed  Google Scholar 

  88. Kotecha S, Clemm H, Halvorsen T, Kotecha SJ. Bronchial hyper-responsiveness in preterm-born subjects: A systematic review and meta-analysis. Pediatr Allergy Immunol. 2018;29:715–25. https://doi.org/10.1111/pai.12957.

    Article  PubMed  Google Scholar 

  89. Fayon M, Tayara N, Germain C, Choukroun ML, De La Roque ED, Chene G, et al. Efficacy and tolerance of high-dose inhaled ipratropium bromide vs. terbutaline in intubated premature human neonates. Neonatology. 2007;91:167–73. https://doi.org/10.1159/000097448.

    Article  CAS  PubMed  Google Scholar 

  90. Mandell EW, Kratimenos P, Abman SH, Steinhorn RH. Drugs for the Prevention and Treatment of Bronchopulmonary Dysplasia. Clin Perinatol. 2019;46:291–310. https://doi.org/10.1016/j.clp.2019.02.011.

    Article  PubMed  Google Scholar 

  91. Robin B, Kim YJ, Huth J, Klocksieben J, Torres M, Tepper RS, et al. Pulmonary function in bronchopulmonary dysplasia. Pediatr Pulmonol. 2004;37:236–42. https://doi.org/10.1002/ppul.10424.

    Article  PubMed  Google Scholar 

  92. Ng G, da Silva O, Ohlsson A. Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2012;13:CD003214. https://doi.org/10.1002/14651858.CD003214.pub2.

  93. Ng G, Ohlsson A. Cromolyn sodium for the prevention of chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2012;13:CD003059. https://doi.org/10.1002/14651858.CD003059.pub2.

  94. Green TP, Thompson TR, Johnson DE, Lock JE. Diuresis and pulmonary function in premature infants with respiratory distress syndrome. J Pediatr. 1983;103:618–23. https://doi.org/10.1016/s0022-3476(83)80601-5.

    Article  CAS  PubMed  Google Scholar 

  95. Green TP, Thompson TR, Johnson DE, Lock JE. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N. Engl J Med. 1983;308:743–8. https://doi.org/10.1056/NEJM198303313081303.

    Article  CAS  PubMed  Google Scholar 

  96. Cotton R, Suarez S, Reese J. Unexpected extra-renal effects of loop diuretics in the preterm neonate. Acta Paediatr. 2012;101:835–45. https://doi.org/10.1111/j.1651-2227.2012.02699.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Najak ZD, Harris EM, Lazzara A, Pruitt AW. Pulmonary effects of furosemide in preterm infants with lung disease. J Pediatr. 1983;102:758–63. https://doi.org/10.1016/s0022-3476(83)80253-4.

    Article  CAS  PubMed  Google Scholar 

  98. Balegar VKK, Kluckow M. Furosemide for packed red cell transfusion in preterm infants: a randomized controlled trial. J Pediatr. 2011;159:913–8.e1. https://doi.org/10.1016/j.jpeds.2011.05.022.

    Article  CAS  Google Scholar 

  99. Prabhu VG, Keszler M, Dhanireddy R. Pulmonary function changes after nebulised and intravenous frusemide in ventilated premature infants. Arch Dis Child Fetal Neonatal Ed. 1997;77:F32–5. https://doi.org/10.1136/fn.77.1.f32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stewart A, Brion LP. Soll R. Diuretics for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2011;2011:CD001454. https://doi.org/10.1002/14651858.CD001454.pub3.

  101. Brion LP, Soll RF. Diuretics for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2008;23:CD001454. https://doi.org/10.1002/14651858.CD001454.pub2.

  102. Kao LC, Warburton D, Cheng MH, Cedeño C, Platzker AC, Keens TG. Effect of oral diuretics on pulmonary mechanics in infants with chronic bronchopulmonary dysplasia: results of a double-blind crossover sequential trial. Pediatrics. 1984;74:37–44.

    Article  CAS  PubMed  Google Scholar 

  103. LC K, DJ D, BL, BG N. Oral theophylline and diuretics improve pulmonary mechanics in infants with bronchopulmonary dysplasia. J Pediatrics. 1987;111:439–44. https://doi.org/10.1016/s0022-3476(87)80476-6.

    Article  Google Scholar 

  104. Albersheim SG, Solimano AJ, Sharma AK, Smyth JA, Rotschild A, Wood BJ, et al. Randomized, double-blind, controlled trial of long-term diuretic therapy for bronchopulmonary dysplasia. J Pediatr. 1989;115:615–20. https://doi.org/10.1016/s0022-3476(89)80297-5.

    Article  CAS  PubMed  Google Scholar 

  105. Engelhardt B, Blalock WA, DonLevy S, Rush M, Hazinski TA. Effect of spironolactone-hydrochlorothiazide on lung function in infants with chronic bronchopulmonary dysplasia. J Pediatr. 1989;114:619–24. https://doi.org/10.1016/s0022-3476(89)80708-5.

    Article  CAS  PubMed  Google Scholar 

  106. Toyoshima K, Momma K, Nakanishi T. In vivo dilatation of the ductus arteriosus induced by furosemide in the rat. Pediatr Res. 2010;67:173–6. https://doi.org/10.1203/PDR.0b013e3181c2df30.

    Article  CAS  PubMed  Google Scholar 

  107. Greenberg JM. The long and winding road: loop diuretics in neonatology. J Pediatr. 2021;231:31–32. https://doi.org/10.1016/j.jpeds.2020.12.046.

    Article  PubMed  Google Scholar 

  108. Greenberg RG, Gayam S, Savage D, Tong A, Gorham D, Sholomon A, et al. Furosemide exposure and prevention of bronchopulmonary dysplasia in premature infants. J Pediatr. 2019;208:134–40.e2. https://doi.org/10.1016/j.jpeds.2018.11.043.

    Article  CAS  PubMed  Google Scholar 

  109. Blaisdell CJ, Troendle J, Zajicek A. Program PaRO. Acute responses to diuretic therapy in extremely low gestational age newborns: results from the prematurity and respiratory outcomes program cohort study. J Pediatr. 2018;197:42–47.e1. https://doi.org/10.1016/j.jpeds.2018.01.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stewart A, Brion LP. Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;2011:CD001453. https://doi.org/10.1002/14651858.CD001453.pub2.

Download references

Acknowledgements

We sincerely thank Dr. Satyanarayana Lakshminrusimha for his feedback and advice on medical illustrations and figures. The Journal Club is a collaboration between the American Academy of Pediatrics—Section of Neonatal Perinatal Medicine and the International Society for Evidence-Based Neonatology (EBNEO.org).

Author information

Authors and Affiliations

Authors

Contributions

J.K. and A.K. drafted and contributed equally to the manuscript. RS provided additional feedback and review of content. JK illustrated and created all figures and tables.

Corresponding author

Correspondence to Anup C. Katheria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, J.K., Steinhorn, R. & C. Katheria, A. Optimizing respiratory management in preterm infants: a review of adjuvant pharmacotherapies. J Perinatol 41, 2395–2407 (2021). https://doi.org/10.1038/s41372-021-01139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01139-x

  • Springer Nature America, Inc.

Navigation