Skip to main content

Advertisement

Log in

Pediatrics

Relation of glomerular filtration to insulin resistance and related risk factors in obese children

  • Article
  • Published:
International Journal of Obesity Submit manuscript

Abstract

Background and objective

Childhood obesity is associated with later development of significant renal morbidity. We evaluated the impact of the degree of insulin sensitivity on estimated glomerular filtration rate (eGFR) and determined the factors associated with eGFR in obese children. We further tested the relation of eGFR to clinical outcomes such as blood pressure and microalbuminuria.

Materials and methods

We evaluated the relation of whole body insulin sensitivity and estimated glomerular filtration rate (eGFR) across the spectrum of obesity in children and adolescents. eGFR was calculated using the iCARE formula, which has been validated in obese children with varying glucose tolerance.

Results

1080 children and adolescents with overweight and obesity (701 females and 379 males) participated. Insulin sensitivity was a strongly negatively associated with (B = −2.72, p < 0.001) eGFR), even after adjustment for potential confounders. Male sex emerged to be significantly associated with eGFR with boys having greater values than girls (B = 18.82, p < 0.001). Age was a positively associated (B = 2.86, p < 0.001) with eGFR. Whole body and hepatic insulin sensitivity decreased across eGFR quartiles. Adjusted eGFR was tightly positively associated with systolic blood pressure (B = 0.09, p = 0.003) and negatively associated with the presence of microalbuminuria (B = −2.18, p = 0.04).

Conclusions

eGFR tends to increase with greater degrees of insulin resistance in children and adolescents representing hyperfiltration and is associated with cardiovascular risk factors. Longitudinal studies are needed to determine the natural history of childhood insulin resistance related hyperfiltration in regards to future kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: eGFR (iCARE) by degree of obesity and insulin sensitivity quartiles.
Fig. 2: eGFR (iCARE) levels by sex and degree of obesity.
Fig. 3: Metabolic parameters across eGFR (iCARE) quartiles.

Similar content being viewed by others

References

  1. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    CAS  PubMed  Google Scholar 

  2. Zabarsky G, Beek C, Hagman E, Pierpont B, Caprio S, Weiss R. Impact of Severe Obesity on Cardiovascular Risk Factors in Youth. J Pediatr. 2018;192:105–14.

    PubMed  Google Scholar 

  3. Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U. Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol. 2000;278:F817–22.

    CAS  PubMed  Google Scholar 

  4. Mathew AV, Okada S, Sharma K. Obesity related kidney disease. Curr Diabetes Rev. 2011;7:41–9.

    CAS  PubMed  Google Scholar 

  5. Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al. Insulin Sensitivity and Diabetic Kidney Disease in Children and Adolescents With Type 2 Diabetes: An Observational Analysis of Data From the TODAY Clinical Trial. Am J Kidney Dis. 2018;71:65–74.

    CAS  PubMed  Google Scholar 

  6. Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Kucuksumer ZS, Ortiz A, et al. Renal hyperfiltration defined by high estimated glomerular filtration rate: A risk factor for cardiovascular disease and mortality. Diabetes Obes Metab. 2019;21:2368–83.

    PubMed  Google Scholar 

  7. Reaven GM. The kidney: an unwilling accomplice in syndrome X. Am J Kidney Dis. 1997;30:928–31.

    CAS  PubMed  Google Scholar 

  8. Mascali A, Franzese O, Nisticò S, Campia U, Lauro D, Cardillo C, et al. Obesity and kidney disease: beyond the hyperfiltration. Int J Immunopathol Pharmacol. 2016;29:354–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Levey AS, Inker LA, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Dis. 2014;63:820–34.

    PubMed  PubMed Central  Google Scholar 

  10. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    PubMed  PubMed Central  Google Scholar 

  11. Dart AB, McGavock J, Sharma A, Chateau D, Schwartz GJ, Blydt-Hansen T. Estimating glomerular filtration rate in youth with obesity and type 2 diabetes: the iCARE study equation. Pediatr Nephrol. 2019;34:1565–74.

    CAS  PubMed  Google Scholar 

  12. Weiss R, Dziura JD, Burgert TS, Taksali SE, Tamborlane WV, Caprio S. Ethnic differences in beta cell adaptation to insulin resistance in obese children and adolescents. Diabetologia. 2006;49:571–9.

    CAS  PubMed  Google Scholar 

  13. Weiss R, Magge SN, Santoro N, Giannini C, Boston R, Holder T, et al. Glucose effectiveness in obese children: relation to degree of obesity and dysglycemia. Diabetes Care. 2015;38:689–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Giannini C, Santoro N, Caprio S, Kim G, Lartaud D, Shaw M, et al. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care. 2011;34:1869–74.

    PubMed  PubMed Central  Google Scholar 

  15. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–70.

    CAS  PubMed  Google Scholar 

  16. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30:89–94.

    CAS  PubMed  Google Scholar 

  17. Herrington WG, Smith M, Bankhead C, Matsushita K, Stevens S, Holt T, et al. Body-mass index and risk of advanced chronic kidney disease: Prospective analyses from a primary care cohort of 1.4 million adults in England. PLoS ONE. 2017;12:e0173515.

    PubMed  PubMed Central  Google Scholar 

  18. Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644–50.

    PubMed  PubMed Central  Google Scholar 

  19. D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12:453–71.

    PubMed  Google Scholar 

  20. Praga M. Synergy of low nephron number and obesity: a new focus on hyperfiltration nephropathy. Nephrol Dial Transplant. 2005;20:2594–7.

    PubMed  Google Scholar 

  21. Brenner BM, Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA. The role of glomerular hyperfiltration in the initiation and progression of diabetic nephropathy. Acta Endocrinol Suppl (Copenh). 1981;242:7–10.

    CAS  PubMed  Google Scholar 

  22. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098–107.

    CAS  PubMed  Google Scholar 

  23. Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med. 2009;169:342–50.

    PubMed  PubMed Central  Google Scholar 

  24. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.

    PubMed  Google Scholar 

  25. Önerli Salman D, Şıklar Z, Çullas İlarslan EN, Özçakar ZB, Kocaay P, Berberoğlu M. Evaluation of Renal Function in Obese Children and Adolescents Using Serum Cystatin C Levels, Estimated Glomerular Filtration Rate Formulae and Proteinuria: Which is most Useful? J Clin Res Pediatr Endocrinol. 2019;11:46–54.

    PubMed  PubMed Central  Google Scholar 

  26. Correia-Costa L, Schaefer F, Afonso AC, Bustorff M, Guimarães JT, Guerra A, et al. Normalization of glomerular filtration rate in obese children. Pediatr Nephrol. 2016;31:1321–8.

    PubMed  Google Scholar 

  27. Ricotti R, Genoni G, Giglione E, Monzani A, Nugnes M, Zanetta S, et al. High-normal estimated glomerular filtration rate and hyperuricemia positively correlate with metabolic impairment in pediatric obese patients. PLoS ONE. 2018;13:e0193755.

    PubMed  PubMed Central  Google Scholar 

  28. Xargay-Torrent S, Puerto-Carranza E, Marcelo I, Mas-Parés B, Gómez-Vilarrubla A, Martínez-Calcerrada JM, et al. Estimated glomerular filtration rate and cardiometabolic risk factors in a longitudinal cohort of children. Sci Rep. 2021;11:11702.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014;2:417–26.

    PubMed  Google Scholar 

  30. Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16:2134–40.

    PubMed  Google Scholar 

  31. Sarafidis PA, Ruilope LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am J Nephrol. 2006;26:232–44.

    PubMed  Google Scholar 

  32. Oterdoom LH, de Vries AP, Gansevoort RT, de Jong PE, Gans RO, Bakker SJ. Fasting insulin modifies the relation between age and renal function. Nephrol Dial Transplant. 2007;22:1587–92.

    CAS  PubMed  Google Scholar 

  33. Lovshin JA, Škrtić M, Bjornstad P, Moineddin R, Daneman D, Dunger D, et al. Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. Am J Physiol Renal Physiol. 2018;314:F667–F74.

    CAS  PubMed  Google Scholar 

  34. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.

    Article  PubMed  Google Scholar 

  35. Moran A, Jacobs DR, Steinberger J, Steffen LM, Pankow JS, Hong CP, et al. Changes in insulin resistance and cardiovascular risk during adolescence: establishment of differential risk in males and females. Circulation. 2008;117:2361–8.

    CAS  PubMed  Google Scholar 

  36. Burgert TS, Dziura J, Yeckel C, Taksali SE, Weiss R, Tamborlane W, et al. Microalbuminuria in pediatric obesity: prevalence and relation to other cardiovascular risk factors. Int J Obes (Lond). 2006;30:273–80.

    CAS  Google Scholar 

  37. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43:41–7.

    PubMed  Google Scholar 

  38. Weiss R. Fat distribution and storage: how much, where, and how? Eur J Endocrinol. 2007;157:S39–45.

    CAS  PubMed  Google Scholar 

  39. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58:784–90.

    CAS  PubMed  Google Scholar 

  40. Armstrong MJ, Adams LA, Canbay A, Syn WK. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014;59:1174–97.

    CAS  PubMed  Google Scholar 

  41. Sasaki M, Sasako T, Kubota N, Sakurai Y, Takamoto I, Kubota T, et al. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney. Diabetes. 2017;66:2339–50.

    CAS  PubMed  Google Scholar 

  42. van Bommel EJM, Ruiter D, Muskiet MHA, van Baar MJB, Kramer MHH, Nieuwdorp M, et al. Insulin Sensitivity and Renal Hemodynamic Function in Metformin-Treated Adults With Type 2 Diabetes and Preserved Renal Function. Diabetes Care. 2020;43:228–34.

    PubMed  Google Scholar 

Download references

Acknowledgements

This paper is in loving memory of Bridget Pierpont, the research coordinator of the Yale Pathophysiology of Type 2 Diabetes in Youth Study cohort, who passed away unexpectedly during the preparation of this paper. We wish to thank the participants and their families for their willingness and cooperation. This study was supported by the National Institutes of Health, National Institute of Child Health and Human Development (grants R01-HD-40787, R01DK111038, R01-HD-28016, and K24-HD-01464 to S.C.), the National Center for Research Resources (Clinical and Translational Science Award [grant UL1-RR-0249139] to SC), the American Diabetes Association (Distinguished Clinical Scientist Award to SC), the National Institute of Diabetes and Digestive and Kidney Diseases (grant R01-DK-111038 to SC; grant R01-DK-114504-01A1)

Author information

Authors and Affiliations

Authors

Contributions

DM and RN performed the analysis and wrote the paper, AG took part in the clinical care and added to the discussion; SC and RW designed the study, took part in the clinical care and the analysis and added to the discussion. All authors read, edited and approved the paper. RW is the guarantor of this analysis.

Corresponding author

Correspondence to Ram Weiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magen, D., Halloun, R., Galderisi, A. et al. Relation of glomerular filtration to insulin resistance and related risk factors in obese children. Int J Obes 46, 374–380 (2022). https://doi.org/10.1038/s41366-021-01001-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-01001-2

  • Springer Nature Limited

Navigation