Skip to main content

Advertisement

Log in

Conditional expression of Ki-RasG12V in the mammary epithelium of transgenic mice induces estrogen receptor alpha (ERα)-positive adenocarcinoma

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Appropriate ‘in vivo’ models are crucial for studying breast cancer biology and evaluating the efficacy of therapeutic agents. Thus we engineered a novel transgenic mouse line expressing the human Ki-Ras bearing an activating mutation (Ki-Ras(G12V)) selectively in the mammary epithelium after lactation. These mice develop invasive ductal adenocarcinomas with 100% incidence within 3–9 months after Ki-Ras(G12V) induction. Immunophenotyping revealed that the mammary tumors express luminal markers, are positive for estrogen and progesterone receptors, negative for HER2 and have a low proliferation index. Moreover, cell lines derived from such tumors are estrogen-responsive and, when transplanted into nude mice, form tumors that respond to the antiestrogen ICI 182780. In conclusion, the mammary tumors of these transgenic mice and the derived cell lines exhibit key features of the major form of human breast cancer, that is, luminal A subtype and thus have a high potential for breast cancer research and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  Google Scholar 

  3. Stewart TA, Pattengale PK, Leder P . Spontaneous mammary adenocarcinomas in transgenic mice that carry and express mtv/myc fusion genes. Cell 1984; 38: 627–637.

    Article  CAS  Google Scholar 

  4. Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD, Muller WJ . Amplification of the neu/erbb-2 oncogene in a mouse model of mammary tumorigenesis. Proc Natl Acad Sci USA 2000; 97: 3444–3449.

    Article  CAS  Google Scholar 

  5. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis Meeting. Oncogene 2000; 19: 968–988.

    Article  CAS  Google Scholar 

  6. Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR et al. The c3(1)/sv40 t-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 2000; 19: 1020–1027.

    Article  CAS  Google Scholar 

  7. Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL, Lee DC . Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 1995; 55: 3915–3927.

    CAS  PubMed  Google Scholar 

  8. Schoenenberger CA, Andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P . Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 1988; 7: 169–175.

    Article  CAS  Google Scholar 

  9. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . Coexpression of mmtv/v-ha-ras and mmtv/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 1987; 49: 465–475.

    Article  CAS  Google Scholar 

  10. Schubbert S, Shannon K, Bollag G . Hyperactive ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    Article  CAS  Google Scholar 

  11. Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al. K-ras is essential for the development of the mouse embryo. Oncogene 1997; 15: 1151–1159.

    Article  CAS  Google Scholar 

  12. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al. K-ras is an essential gene in the mouse with partial functional overlap with n-ras. Genes Dev 1997; 11: 2468–2481.

    Article  CAS  Google Scholar 

  13. Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K et al. Targeted genomic disruption of h-ras and n-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 2001; 21: 1444–1452.

    Article  CAS  Google Scholar 

  14. O'Hagan RC, Heyer J . Kras mouse models: modeling cancer harboring kras mutations. Genes Cancer 2011; 2: 335–343.

    Article  CAS  Google Scholar 

  15. Omer CA, Chen Z, Diehl RE, Conner MW, Chen HY, Trumbauer ME et al. Mouse mammary tumor virus-ki-rasb transgenic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res 2000; 60: 2680–2688.

    CAS  PubMed  Google Scholar 

  16. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K . Deletion of a DNA polymerase beta gene segment in t cells using cell type-specific gene targeting. Science 1994; 265: 103–106.

    Article  CAS  Google Scholar 

  17. Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 1992; 89: 6232–6236.

    Article  CAS  Google Scholar 

  18. Metzger D, Chambon P . Site- and time-specific gene targeting in the mouse. Methods 2001; 24: 71–80.

    Article  CAS  Google Scholar 

  19. Klinakis A, Szabolcs M, Chen G, Xuan S, Hibshoosh H, Efstratiadis A . Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci USA 2009; 106: 2359–2364.

    Article  CAS  Google Scholar 

  20. Selbert S, Bentley DJ, Melton DW, Rannie D, Lourenco P, Watson CJ et al. Efficient blg-cre mediated gene deletion in the mammary gland. Transgenic Res 1998; 7: 387–396.

    Article  CAS  Google Scholar 

  21. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  Google Scholar 

  22. Habashy HO, Powe DG, Abdel-Fatah TM, Gee JM, Nicholson RI, Green AR et al. A review of the biological and clinical characteristics of luminal-like oestrogen receptor-positive breast cancer. Histopathology 2012; 60: 854–863.

    Article  Google Scholar 

  23. Barone I, Cui Y, Herynk MH, Corona-Rodriguez A, Giordano C, Selever J et al. Expression of the K303R estrogen receptor-alpha breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the pi3k/akt kinase pathway. Cancer Res 2009; 69: 4724–4732.

    Article  CAS  Google Scholar 

  24. McGlynn LM, Tovey S, Bartlett JM, Doughty J, Cooke TG, Edwards J . Interactions between map kinase and oestrogen receptor in human breast cancer. Eur J Cancer 2013; 49: 1176–1186.

    Article  CAS  Google Scholar 

  25. Chen M, Cui YK, Huang WH, Man K, Zhang GJ . Phosphorylation of estrogen receptor alpha at serine 118 is correlated with breast cancer resistance to tamoxifen. Oncol Lett 2013; 6: 118–124.

    Article  CAS  Google Scholar 

  26. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M . Phosphatidylinositol-3-oh kinase or ras pathway mutations in human breast cancer cell lines. Mol Cancer Res 2007; 5: 195–201.

    Article  CAS  Google Scholar 

  27. Malaney S, Daly RJ . The ras signaling pathway in mammary tumorigenesis and metastasis. J Mammary Gland Biol Neoplasia 2001; 6: 101–113.

    Article  CAS  Google Scholar 

  28. Dati C, Muraca R, Tazartes O, Antoniotti S, Perroteau I, Giai M et al. C-erbb-2 and ras expression levels in breast cancer are correlated and show a co-operative association with unfavorable clinical outcome. Int J Cancer 1991; 47: 833–838.

    Article  CAS  Google Scholar 

  29. Loboda A, Nebozhyn M, Klinghoffer R, Frazier J, Chastain M, Arthur W et al. A gene expression signature of ras pathway dependence predicts response to pi3k and ras pathway inhibitors and expands the population of ras pathway activated tumors. BMC Med Genomics 2010; 3: 26.

    Article  Google Scholar 

  30. von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR . Ras activation in human breast cancer. Breast Cancer Res Treat 2000; 62: 51–62.

    Article  CAS  Google Scholar 

  31. Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI et al. Involvement of ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res 2004; 64: 4585–4592.

    Article  CAS  Google Scholar 

  32. Howe LR, Brown PH . Targeting the her/egfr/erbb family to prevent breast cancer. Cancer Prev Res (Phila) 2011; 4: 1149–1157.

    Article  CAS  Google Scholar 

  33. Shen Q, Brown PH . Transgenic mouse models for the prevention of breast cancer. Mutat Res 2005; 576: 93–110.

    Article  CAS  Google Scholar 

  34. Reddy HK, Graña X, Dhanasekaran DN, Litvin J, Reddy EP . Requirement of Cdk4 for v-Ha-ras-induced breast tumorigenesis and activation of the v-ras-induced senescence program by the R24C mutation. Genes Cancer 2010; 1: 69–80.

    Article  CAS  Google Scholar 

  35. Podsypanina K, Politi K, Beverly LJ, Varmus HE . Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci USA 2008; 105: 5242–5247.

    Article  CAS  Google Scholar 

  36. Nandi S, Guzman RC, Yang J . Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA 1995; 92: 3650–3657.

    Article  CAS  Google Scholar 

  37. Dabydeen SA, Furth PA . Genetically engineered eralpha-positive breast cancer mouse models. Endocr Relat Cancer 2014; 21: R195–R208.

    Article  CAS  Google Scholar 

  38. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A . History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 2009; 30: 343–375.

    Article  CAS  Google Scholar 

  39. Catalano S, Barone I, Marsico S, Bruno R, Ando S . Phosphorylation processes controlling aromatase activity in br east cancer: an update. Mini Rev Med Chem 2016; 16: 691–698.

    Article  CAS  Google Scholar 

  40. Catalano S, Barone I, Giordano C, Rizza P, Qi H, Gu G et al. Rapid estradiol/eralpha signaling enhances aromatase enzymatic activity in breast cancer cells. Mol Endocrinol 2009; 23: 1634–1645.

    Article  CAS  Google Scholar 

  41. Barone I, Giordano C, Malivindi R, Lanzino M, Rizza P, Casaburi I et al. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology 2012; 153: 5157–5166.

    Article  CAS  Google Scholar 

  42. Mauro L, Catalano S, Bossi G, Pellegrino M, Barone I, Morales S et al. Evidences that leptin up-regulates E-cadherin expression in breast cancer: effects on tumor growth and progression. Cancer Res 2007; 67: 3412–3421.

    Article  CAS  Google Scholar 

  43. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible cre-er(t) and cre-er(t2) recombinases. Nucleic Acids Res 1999; 27: 4324–4327.

    Article  CAS  Google Scholar 

  44. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P . Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 1996; 93: 10887–10890.

    Article  CAS  Google Scholar 

  45. Imai T, Chambon P, Metzger D . Inducible site-specific somatic mutagenesis in mouse hepatocytes. Genesis 2000; 26: 147–148.

    Article  CAS  Google Scholar 

  46. Catalano S, Panza S, Malivindi R, Giordano C, Barone I, Bossi G et al. Inhibition of leydig tumor growth by farnesoid x receptor activation: The in vitro and in vivo basis for a novel therapeutic strategy. Int J Cancer 2013; 132: 2237–2247.

    Article  CAS  Google Scholar 

  47. Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D, Lanzino M et al. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget 2016; 7: 1262–1275.

    Article  Google Scholar 

  48. Grande F, Barone I, Aiello F, Brancale A, Cancellieri M, Badolato M et al. Identification of novel 2-(1h-indol-1-yl)-benzohydrazides cxcr4 ligands impairing breast cancer growth and motility. Future Med Chem 2016; 8: 93–106.

    Article  CAS  Google Scholar 

  49. Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK . Inhibition of muc4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 2004; 64: 622–630.

    Article  CAS  Google Scholar 

  50. Giordano C, Barone I, Vircillo V, Panza S, Malivindi R, Gelsomino L et al. Activated fxr inhibits leptin signaling and counteracts tumor-promoting activities of cancer-associated fibroblasts in breast malignancy. Sci Rep 2016; 6: 21782.

    Article  CAS  Google Scholar 

  51. Charan J, Kantharia ND . How to calculate sample size in animal studies? J Pharmacol Pharmacother 2013; 4: 303–306.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Watson and Dr Whitelaw for BLG-Cre mice, Merck Research Laboratories for the MMTV-Ki-Ras(G12V) plasmid and Catherine Tomasetto and Fabien Alpy for helpful discussions. We also thank Neil E Hubbard and Judith Walls (Center for Comparative Medicine, University of California, Davis, CA, USA), the staff of the mouse and genetic engineering facilities from ICS and IGBMC and Elise Grelet for their excellent assistance. This work was supported by: PRIN2015 #2015B7M39T (to SA), Fondazione Italiana per la Ricerca sul Cancro (AIRC) grants: IG no. 11595 (to SA), MFAG no. 16899 (to IB), PROGRAMMA ‘FUTURO IN RICERCA’ Anno 2012 no. RBFR12FI27 (to IB), AIRC Fellowships for abroad no. 19552 (to DR), EMBO ASTF no. 18-2010 (to RM), European Social Fund operational programme of the Calabria region (to SP), Faculté de Médecine, Université de Strasbourg (to CE) and by the Centre National pour la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Université de Strasbourg and French state funds through the Agence Nationale de la Recherche ANR-10-LABX-0030-INRT under the frame programme Investissements d’Avenir labelled ANR-10-IDEX-0002-02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Andò or D Metzger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andò, S., Malivindi, R., Catalano, S. et al. Conditional expression of Ki-RasG12V in the mammary epithelium of transgenic mice induces estrogen receptor alpha (ERα)-positive adenocarcinoma. Oncogene 36, 6420–6431 (2017). https://doi.org/10.1038/onc.2017.252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.252

  • Springer Nature Limited

This article is cited by

Navigation