Skip to main content

Advertisement

Log in

Mdm2 selectively suppresses DNA damage arising from inhibition of topoisomerase II independent of p53

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Mdm2 is often overexpressed in tumors that retain wild-type TP53 but may affect therapeutic response independently of p53. Herein is shown that tumor cells with MDM2 amplification are selectively resistant to treatment with topoisomerase II poisons but not other DNA damaging agents. Tumor cells that overexpress Mdm2 have reduced DNA double-strand breaks in response to doxorubicin or etoposide. This latter result is not due to altered drug uptake. The selective attenuation of DNA damage in response to these agents is dependent on both Mdm2 levels and an intact ubiquitin ligase function. These findings reveal a novel, p53-independent activity of Mdm2 and have important implications for the choice of chemotherapeutic agents in the treatment of Mdm2-overexpressing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wade M, Wang YV, Wahl GM . The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299.

    Article  CAS  Google Scholar 

  2. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413.

    CAS  Google Scholar 

  3. Rayburn E, Zhang R, He J, Wang H . MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 2005; 5: 27.

    Article  CAS  Google Scholar 

  4. Cordon-Cardo C, Latres E, Drobnjak M, Oliva MR, Pollack D, Woodruff JM et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res 1994; 54: 794.

    CAS  PubMed  Google Scholar 

  5. Momand J, Jung D, Wilczynski S, Niland J . The MDM2 gene amplification database. Nucleic Acids Res 1998; 26: 3453.

    Article  CAS  Google Scholar 

  6. Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T et al. The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 1994; 84: 3158.

    CAS  PubMed  Google Scholar 

  7. Bouska A, Eischen CM . Murine double minute 2: p53-independent roads lead to genome instability or death. Trends Biochem Sci 2009; 34: 279–286.

    Article  CAS  Google Scholar 

  8. Manfredi JJ . The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 2010; 24: 1580.

    Article  CAS  Google Scholar 

  9. Marine JC, Lozano G . Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 2010; 17: 93.

    Article  CAS  Google Scholar 

  10. Geller DS, Gorlick R . Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol 2010; 8: 705–718.

    PubMed  Google Scholar 

  11. Khasraw M, Bell R, Dang C . Epirubicin: is it like doxorubicin in breast cancer? A clinical review. Breast 2012; 21: 142–149.

    Article  Google Scholar 

  12. Movva S, Verschraegen C . Systemic management strategies for metastatic soft tissue sarcoma. Drugs 2011; 71: 2115–2129.

    Article  CAS  Google Scholar 

  13. Neal JW, Gubens MA, Wakelee HA . Current management of small cell lung cancer. Clin Chest Med 2011; 32: 853–863.

    Article  Google Scholar 

  14. Tallman MS, Gilliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  Google Scholar 

  15. Chikamori K, Grozav AG, Kozuki T, Grabowski D, Ganapathi R, Ganapathi MK . DNA topoisomerase II enzymes as molecular targets for cancer chemotherapy. Curr Cancer Drug Targets 2010; 10: 758–771.

    Article  CAS  Google Scholar 

  16. Nitiss JL . Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009; 9: 338–350.

    Article  CAS  Google Scholar 

  17. Pommier Y, Leo E, Zhang H, Marchand C . DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010; 17: 421–433.

    Article  CAS  Google Scholar 

  18. Liu LF . DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 1989; 58: 351–375.

    Article  CAS  Google Scholar 

  19. Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U et al. Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 2010; 49: 40–51.

    Article  CAS  Google Scholar 

  20. Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA . Use of the gamma-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2012; 327: 123–133.

    Article  CAS  Google Scholar 

  21. Mah LJ, El-Osta A, Karagiannis TC . gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24: 679–686.

    Article  CAS  Google Scholar 

  22. Ambrosini G, Sambol EB, Carvajal D, Vassilev LT, Singer S, Schwartz GK . Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007; 26: 3473–3481.

    Article  CAS  Google Scholar 

  23. Dimitriadi M, Poulogiannis G, Liu L, Backlund LM, Pearson DM, Ichimura K et al. p53-independent mechanisms regulate the P2-MDM2 promoter in adult astrocytic tumours. Br J Cancer 2008; 99: 1144–1152.

    Article  CAS  Google Scholar 

  24. He J, Reifenberger G, Liu L, Collins VP, James CD . Analysis of glioma cell lines for amplification and overexpression of MDM2. Genes Chromosomes Cancer 1994; 11: 91–96.

    Article  CAS  Google Scholar 

  25. Kondo S, Kondo Y, Hara H, Kaakaji R, Peterson JW, Morimura T et al. mdm2 gene mediates the expression of mdr1 gene and P-glycoprotein in a human glioblastoma cell line. Br J Cancer 1996; 74: 1263–1268.

    Article  CAS  Google Scholar 

  26. Michaelis M, Rothweiler F, Klassert D, von Deimling A, Weber K, Fehse B et al. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res 2009; 69: 416–421.

    Article  CAS  Google Scholar 

  27. Durand RE, Olive PL . Flow cytometry studies of intracellular adriamycin in single cells in vitro. Cancer Res 1981; 41: 3489–3494.

    CAS  PubMed  Google Scholar 

  28. Luk CK, Tannock IF . Flow cytometric analysis of doxorubicin accumulation in cells from human and rodent cell lines. J Natl Cancer Inst 1989; 81: 55–59.

    Article  CAS  Google Scholar 

  29. Conradt L, Henrich A, Wirth M, Reichert M, Lesina M, Algul H et al. Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer cell death. Int J Cancer 2013; 132: 2248–2257.

    Article  CAS  Google Scholar 

  30. Chen W, Qiu J, Shen YM . Topoisomerase IIalpha, rather than IIbeta, is a promising target in development of anti-cancer drugs. Drug Discov Ther 2012; 6: 230–237.

    CAS  PubMed  Google Scholar 

  31. Gewirtz DA . A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999; 57: 727–741.

    Article  CAS  Google Scholar 

  32. Davies SM, Robson CN, Davies SL, Hickson ID . Nuclear topoisomerase II levels correlate with the sensitivity of mammalian cells to intercalating agents and epipodophyllotoxins. J Biol Chem 1988; 263: 17724–17729.

    CAS  PubMed  Google Scholar 

  33. Friche E, Danks MK, Schmidt CA, Beck WT . Decreased DNA topoisomerase II in daunorubicin-resistant Ehrlich ascites tumor cells. Cancer Res 1991; 51: 4213–4218.

    CAS  PubMed  Google Scholar 

  34. Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH . MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 1993; 53: 16–18.

    CAS  PubMed  Google Scholar 

  35. Miller CW, Aslo A, Won A, Tan M, Lampkin B, Koeffler HP . Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol 1996; 122: 559–565.

    Article  CAS  Google Scholar 

  36. Wunder JS, Eppert K, Burrow SR, Gokgoz N, Bell RS, Andrulis IL . Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene 1999; 18: 783–788.

    Article  CAS  Google Scholar 

  37. Duhamel LA, Ye H, Halai D, Idowu BD, Presneau N, Tirabosco R et al. Frequency of Mouse Double Minute 2 (MDM2) and Mouse Double Minute 4 (MDM4) amplification in parosteal and conventional osteosarcoma subtypes. Histopathology 2011; 60: 357–359.

    Article  Google Scholar 

  38. Lamoureux F, Trichet V, Chipoy C, Blanchard F, Gouin F, Redini F . Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies. Expert Rev Anticancer Ther 2007; 7: 169–181.

    Article  CAS  Google Scholar 

  39. Ohnstad HO, Castro R, Sun J, Heintz KM, Vassilev LT, Bjerkehagen B et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma. Cancer 2013; 119: 1013–1022.

    Article  CAS  Google Scholar 

  40. Onel K, Cordon-Cardo C . MDM2 and prognosis. Mol Cancer Res 2004; 2: 1–8.

    CAS  PubMed  Google Scholar 

  41. Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM . Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 2005; 280: 18771–18781.

    Article  CAS  Google Scholar 

  42. Bouska A, Lushnikova T, Plaza S, Eischen CM . Mdm2 promotes genetic instability and transformation independent of p53. Mol Cell Biol 2008; 28: 4862.

    Article  CAS  Google Scholar 

  43. Issell BF, Prestayko AW, Comis RL, Crooke ST . Zinostatin (neocarzinostatin). Cancer Treat Rev 1979; 6: 239–249.

    Article  CAS  Google Scholar 

  44. Yeo CQX, Alexander I, Lin Z, Lim S, Aning OA, Kumar R et al. p53 maintains genomic stability by preventing interference between transcription and replication. Cell Rep 2016; 15: 132–146.

    Article  CAS  Google Scholar 

  45. Nayak MS, Yang JM, Hait WN . Effect of a single nucleotide polymorphism in the murine double minute 2 promoter (SNP309) on the sensitivity to topoisomerase II-targeting drugs. Cancer Res 2007; 67: 5831–5839.

    Article  CAS  Google Scholar 

  46. Bond GL, Hu W, Levine A . A single nucleotide polymorphism in the MDM2 gene: from a molecular and cellular explanation to clinical effect. Cancer Res 2005; 65: 5481–5484.

    Article  CAS  Google Scholar 

  47. Binaschi M, Farinosi R, Austin CA, Fisher LM, Zunino F, Capranico G . Human DNA topoisomerase IIalpha-dependent DNA cleavage and yeast cell killing by anthracycline analogues. Cancer Res 1998; 58: 1886–1892.

    CAS  PubMed  Google Scholar 

  48. Yamazaki K, Isobe H, Hanada T, Betsuyaku T, Hasegawa A, Hizawa N et al. Topoisomerase II alpha content and topoisomerase II catalytic activity cannot explain drug sensitivities to topoisomerase II inhibitors in lung cancer cell lines. Cancer Chemother Pharmacol 1997; 39: 192–198.

    Article  CAS  Google Scholar 

  49. Cheng Q, Chen J . The phenotype of MDM2 auto-degradation after DNA damage is due to epitope masking by phosphorylation. Cell Cycle 2011; 10: 1162–1166.

    Article  CAS  Google Scholar 

  50. Vos SM, Tretter EM, Schmidt BH, Berger JM . All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 2011; 12: 827–841.

    Article  CAS  Google Scholar 

  51. Ishida R, Hamatake M, Wasserman RA, Nitiss JL, Wang JC, Andoh T . DNA topoisomerase II is the molecular target of bisdioxopiperazine derivatives ICRF-159 and ICRF-193 in Saccharomyces cerevisiae. Cancer Res 1995; 55: 2299–2303.

    CAS  PubMed  Google Scholar 

  52. Plo I, Hernandez H, Kohlhagen G, Lautier D, Pommier Y, Laurent G . Overexpression of the atypical protein kinase C zeta reduces topoisomerase II catalytic activity, cleavable complexes formation, and drug-induced cytotoxicity in monocytic U937 leukemia cells. J Biol Chem 2002; 277: 31407–31415.

    Article  CAS  Google Scholar 

  53. Reis C, Giocanti N, Hennequin C, Megnin-Chanet F, Fernet M, Filomenko R et al. A role for PKCzeta in potentiation of the topoisomerase II activity and etoposide cytotoxicity by wortmannin. Mol Cancer Ther 2005; 4: 1457–1464.

    Article  CAS  Google Scholar 

  54. Chikamori K, Grabowski DR, Kinter M, Willard BB, Yadav S, Aebersold RH et al. Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. J Biol Chem 2003; 278: 12696–12702.

    Article  CAS  Google Scholar 

  55. Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B et al. Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res 2009; 37: 382–392.

    Article  CAS  Google Scholar 

  56. Ritke MK, Murray NR, Allan WP, Fields AP, Yalowich JC . Hypophosphorylation of topoisomerase II in etoposide (VP-16)-resistant human leukemia K562 cells associated with reduced levels of beta II protein kinase C. Mol Pharmacol 1995; 48: 798–805.

    CAS  Google Scholar 

  57. Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW . A human 5'-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 2009; 461: 674–678.

    Article  Google Scholar 

  58. Gomez-Herreros F, Romero-Granados R, Zeng Z, Alvarez-Quilon A, Quintero C, Ju L et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet 2013; 9: e1003226.

    Article  CAS  Google Scholar 

  59. Zeng Z, Cortes-Ledesma F, El Khamisy SF, Caldecott KW . TDP2/TTRAP is the major 5'-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J Biol Chem 2011; 286: 403–409.

    Article  CAS  Google Scholar 

  60. Hamard PJ, Lukin DJ, Manfredi JJ . p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J Biol Chem 2012; 287: 22397–22407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the members of the Manfredi laboratory—Lois Resnick-Silverman, Luis Carvajal, Pierre-Jacques Hamard, Crystal Tonnessen and Nicolas Bartelery—as well as Matthew O’Connell, Miguel Gama-Sosa, Stuart Aaronson and Robert Maki for helpful discussions. We also wish to thank Jonathan Fletcher (Brigham and Women’s Hospital) for the LS141 liposarcoma cell line, Ze’ev Ronai (Sanford-Burnham Medical Research Institute) for the expression vector for Flag-tagged Mdm2WT and Shohreh Varmeh for the recombinant Adeno-Mdm2-GFP adenovirus. We wish to thank Carol Prives (Columbia University) for Trp53−/−MDM2+/+ and Trp53−/−Mdm2−/− MEFs. Joseph Tripodi and Vesna Najfeld are gratefully thanked for performing the FISH analysis. These studies were supported by National Cancer Institute grants T32CA078207 to JCS and R03CA216466 to JJM and developmental support from P30CA196521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Manfredi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senturk, J., Bohlman, S. & Manfredi, J. Mdm2 selectively suppresses DNA damage arising from inhibition of topoisomerase II independent of p53. Oncogene 36, 6085–6096 (2017). https://doi.org/10.1038/onc.2017.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.229

  • Springer Nature Limited

This article is cited by

Navigation