Skip to main content

Advertisement

Log in

Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

The canonical WNT signaling pathway is crucial for intestinal stem cell renewal and aberrant WNT signaling is an early event in colorectal cancer (CRC) development. Here, we show for the first time that WNT2 is one of the most significantly induced genes in CRC stroma as compared to normal stroma. The impact of stromal WNT2 on carcinoma formation or progression was not addressed so far. Canonical WNT/β-catenin signaling was assessed using a 7TGP-reporter construct. Furthermore, effects of WNT2 on fibroblast migration and invasion were determined using siRNA-mediated gene silencing. Tumor cell invasion was studied using organotypic raft cultures and in vivo significance was assessed via a xenograft mouse model. We identified cancer-associated fibroblasts (CAFs) as the main source of WNT2. CAF-derived WNT2 activated canonical signaling in adenomatous polyposis coli/β-catenin wild-type colon cancer cells in a paracrine fashion, whereas no hyperactivation was detectable in cell lines harboring mutations in the adenomatous polyposis coli/β-catenin pathway. Furthermore, WNT2 activated autocrine canonical WNT signaling in primary fibroblasts, which was associated with a pro-migratory and pro-invasive phenotype. We identified FZD8 as the putative WNT2 receptor in CAFs. Three-dimensional organotypic co-culture assays revealed that WNT2-mediated fibroblast motility and extracellular matrix remodeling enhanced cancer cell invasion of cell lines even harboring mutations in the adenomatous polyposis coli/β-catenin pathway. Thus, suggesting a tumor-promoting influence on a broad range of CRC. In line, WNT2 also promotes tumor growth, invasion and metastasis in vivo. Moreover, high WNT2 expression is associated with poor prognosis in human CRC. The identification of the pro-malignant function of stromal derived WNT2 in CRC classifies WNT2 and its receptor as promising stromal targets to confine cancer progression in combination with conventional or targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anastas JN, Moon RT . WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13: 11–26.

    Article  CAS  Google Scholar 

  2. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL . Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 1994; 54: 2615–2621.

    CAS  PubMed  Google Scholar 

  3. Dale TC, Weber-Hall SJ, Smith K, Huguet EL, Jayatilake H, Gusterson BA et al. Compartment switching of WNT-2 expression in human breast tumors. Cancer Res 1996; 56: 4320–4323.

    CAS  PubMed  Google Scholar 

  4. Vider BZ, Zimber A, Chastre E, Prevot S, Gespach C, Estlein D et al. Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. Oncogene 1996; 12: 153–158.

    CAS  PubMed  Google Scholar 

  5. Blasband A, Schryver B, Papkoff J . The biochemical properties and transforming potential of human Wnt-2 are similar to Wnt-1. Oncogene 1992; 7: 153–161.

    CAS  PubMed  Google Scholar 

  6. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 2009; 16: 351–361.

    Article  CAS  Google Scholar 

  7. Humphreys RC, Rosen JM . Stably transfected HC11 cells provide an in vitro and in vivo model system for studying Wnt gene function. Cell Growth Differ 1997; 8: 839–849.

    CAS  PubMed  Google Scholar 

  8. Bayle J, Fitch J, Jacobsen K, Kumar R, Lafyatis R, Lemaire R . Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol 2008; 128: 871–881.

    Article  CAS  Google Scholar 

  9. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 2009; 17: 290–298.

    Article  CAS  Google Scholar 

  10. Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar MA et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007; 117: 3248–3257.

    Article  CAS  Google Scholar 

  11. Rupp C, Scherzer M, Rudisch A, Unger C, Haslinger C, Schweifer N et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 2015; 34: 815–825.

    Article  CAS  Google Scholar 

  12. Ma XR, Edmund Sim UH, Pauline B, Patricia L, Rahman J . Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Trop Biomed 2008; 25: 46–57.

    CAS  PubMed  Google Scholar 

  13. Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T . Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 2002; 55: 220–226.

    Article  CAS  Google Scholar 

  14. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  Google Scholar 

  15. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

  16. Nishida N, Nagahara M, Sato T, Mimori K, Sudo T, Tanaka F et al. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin Cancer Res 2012; 18: 3054–3070.

    Article  CAS  Google Scholar 

  17. Rupp C, Dolznig H, Puri C, Schweifer N, Sommergruber W, Kraut N et al. Laser capture microdissection of epithelial cancers guided by antibodies against fibroblast activation protein and endosialin. Diagn Mol Pathol 2006; 15: 35–42.

    Article  CAS  Google Scholar 

  18. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 2012; 22: 571–584.

    Article  CAS  Google Scholar 

  19. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet 2015; 47: 312–319.

    Article  CAS  Google Scholar 

  20. Dolznig H, Rupp C, Puri C, Haslinger C, Schweifer N, Wieser E et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol 2011; 179: 487–501.

    Article  Google Scholar 

  21. Fuerer C, Nusse R . Lentiviral vectors to probe and manipulate the Wnt signaling pathway. PLoS One 2010; 5: e9370.

    Article  Google Scholar 

  22. da Costa LT, He TC, Yu J, Sparks AB, Morin PJ, Polyak K et al. CDX2 is mutated in a colorectal cancer with normal APC/beta-catenin signaling. Oncogene 1999; 18: 5010–5014.

    Article  CAS  Google Scholar 

  23. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  Google Scholar 

  24. Hylander BL, Punt N, Tang H, Hillman J, Vaughan M, Bshara W et al. Origin of the vasculature supporting growth of primary patient tumor xenografts. J Transl Med 2013; 11: 110.

    Article  Google Scholar 

  25. Wikberg ML, Edin S, Lundberg IV, Van Guelpen B, Dahlin AM, Rutegard J et al. High intratumoral expression of fibroblast activation protein (FAP) in colon cancer is associated with poorer patient prognosis. Tumour Biol 2013; 34: 1013–1020.

    Article  CAS  Google Scholar 

  26. Katoh M . Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol 2001; 19: 1003–1007.

    CAS  PubMed  Google Scholar 

  27. Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL . Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer 1999; 81: 496–502.

    Article  CAS  Google Scholar 

  28. Park JK, Song JH, He TC, Nam SW, Lee JY, Park WS . Overexpression of Wnt-2 in colorectal cancers. Neoplasma 2009; 56: 119–123.

    Article  CAS  Google Scholar 

  29. Fu L, Zhang C, Zhang LY, Dong SS, Lu LH, Chen J et al. Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/beta-catenin signalling pathway. Gut 2011; 60: 1635–1643.

    Article  CAS  Google Scholar 

  30. Katoh M . WNT2 and human gastrointestinal cancer (review). Int J Mol Med 2003; 12: 811–816.

    CAS  PubMed  Google Scholar 

  31. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  32. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  Google Scholar 

  33. Suraweera N, Robinson J, Volikos E, Guenther T, Talbot I, Tomlinson I et al. Mutations within Wnt pathway genes in sporadic colorectal cancers and cell lines. Int J Cancer 2006; 119: 1837–1842.

    Article  CAS  Google Scholar 

  34. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12: 468–476.

    Article  CAS  Google Scholar 

  35. Ogasawara S, Maesawa C, Tamura G, Satodate R . Lack of mutations of the adenomatous polyposis coli gene in oesophageal and gastric carcinomas. Virchows Arch 1994; 424: 607–611.

    Article  CAS  Google Scholar 

  36. de Castro J, Gamallo C, Palacios J, Moreno-Bueno G, Rodriguez N, Feliu J et al. beta-catenin expression pattern in primary oesophageal squamous cell carcinoma. Relationship with clinicopathologic features and clinical outcome. Virchows Arch 2000; 437: 599–604.

    Article  CAS  Google Scholar 

  37. Miller MF, Cohen ED, Baggs JE, Lu MM, Hogenesch JB, Morrisey EE . Wnt ligands signal in a cooperative manner to promote foregut organogenesis. Proc Natl Acad Sci U S A 2012; 109: 15348–15353.

    Article  CAS  Google Scholar 

  38. Najdi R, Proffitt K, Sprowl S, Kaur S, Yu J, Covey TM et al. A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 2012; 84: 203–213.

    Article  CAS  Google Scholar 

  39. Bravo DT, Yang YL, Kuchenbecker K, Hung MS, Xu Z, Jablons DM et al. Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer. BMC Cancer 2013; 13: 316.

    Article  CAS  Google Scholar 

  40. Bradley RS, Brown AM . The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J 1990; 9: 1569–1575.

    Article  CAS  Google Scholar 

  41. Neumann S, Coudreuse DY, van der Westhuyzen DR, Eckhardt ER, Korswagen HC, Schmitz G et al. Mammalian Wnt3a is released on lipoprotein particles. Traffic 2009; 10: 334–343.

    Article  CAS  Google Scholar 

  42. Stanganello E, Hagemann AI, Mattes B, Sinner C, Meyen D, Weber S et al. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 2015; 6: 5846.

    Article  CAS  Google Scholar 

  43. Jiang H, Li Q, He C, Li F, Sheng H, Shen X et al. Activation of the Wnt pathway through Wnt2 promotes metastasis in pancreatic cancer. Am J Cancer Res 2014; 4: 537–544.

    PubMed  PubMed Central  Google Scholar 

  44. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 2013; 4: 2612.

    Article  Google Scholar 

  45. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE et al. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 2003; 301: 1391–1394.

    Article  CAS  Google Scholar 

  46. Yu H, Ye X, Guo N, Nathans J . Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes. Development 2012; 139: 4383–4394.

    Article  CAS  Google Scholar 

  47. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  48. Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A . Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci USA 2010; 107: 12564–12569.

    Article  CAS  Google Scholar 

  49. Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H, Hengstschlager M . Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 2010; 5: 1081–1095.

    Article  CAS  Google Scholar 

  50. Timpson P, McGhee EJ, Erami Z, Nobis M, Quinn JA, Edward M et al. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J Vis Exp 2011; 56: e3089.

    Google Scholar 

  51. Sveen A, Agesen TH, Nesbakken A, Rognum TO, Lothe RA, Skotheim RI . Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Med 2011; 3: 32.

    Article  CAS  Google Scholar 

  52. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One 2013; 8: e74250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HD was supported by the Herzfelder Family Foundation and the Niederösterreichische Forschungs-und Bildungsges.m.b.H. AW was a recipient of a DOC Fellowship (24032) of the Austrian Academy of Sciences. RM was supported by the Austrian Science Fund (FWF, SFB F28 & F47). RE was supported by FWF (P25925-B20, P26908-B20, DK Inflammation and Immunity) and the Comprehensive Cancer Center (CCC) Vienna Research Grant.

Author contributions

NK and HD conceived and designed the research. NK, JS, CU, HN, AR, MS, DU, AW, MA, IC, TS, BP and JuSch performed the research. NK and HD analyzed the data and wrote the manuscript. MH, RE, XH, RM and WS were involved in data analysis and manuscript preparation. All authors reviewed and approved the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Dolznig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, N., Schmöllerl, J., Unger, C. et al. Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 36, 5460–5472 (2017). https://doi.org/10.1038/onc.2017.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.144

  • Springer Nature Limited

This article is cited by

Navigation