Skip to main content
Log in

Rab1 in cell signaling, cancer and other diseases

  • Review
  • Published:
Oncogene Submit manuscript

Abstract

The endoplasmic reticulum (ER) and Golgi membrane system have major roles in cell signaling and regulation of the biosynthesis/transport of proteins and lipids in response to environmental cues such as amino acid and cholesterol levels. Rab1 is the founding member of the Rab small GTPase family, which is known to mediate dynamic membrane trafficking between ER and Golgi. Growing evidence indicate that Rab1 proteins have important functions beyond their classical vesicular transport functions, including nutrient sensing and signaling, cell migration and presentation of cell-surface receptors. Moreover, deregulation of RAB1 expression has been linked to a myriad of human diseases such as cancer, cardiomyopathy and Parkinson’s disease. Further investigating these new physiological and pathological functions of Rab1 should provide new opportunities for better understanding of the disease processes and may lead to more effective therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Schmitt HD, Wagner P, Pfaff E, Gallwitz D . The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Cell 1986; 47: 401–412.

    Article  CAS  Google Scholar 

  2. Touchot N, Chardin P, Tavitian A . Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA 1987; 84: 8210–8214.

    Article  CAS  Google Scholar 

  3. Vielh E, Touchot N, Zahraoui A, Tavitian A . Nucleotide sequence of a rat cDNA: rab1B, encoding a rab1-YPT related protein. Nucleic Acids Res 1989; 17: 1770.

    Article  CAS  Google Scholar 

  4. Hutagalung AH, Novick PJ . Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91: 119–149.

    Article  CAS  Google Scholar 

  5. Touchot N, Zahraoui A, Vielh E, Tavitian A . Biochemical properties of the YPT-related rab1B protein: Comparison with rab1A. FEBS Lett 1989; 256: 79–84.

    Article  CAS  Google Scholar 

  6. Plutner H, Cox AD, Pind S, Khosravi-Far R, Bourne JR, Schwaninger R et al. Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J Cell Biol 1991; 115: 31–43.

    Article  CAS  Google Scholar 

  7. Saraste J, Lahtinen U, Goud B . Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway. J Cell Sci 1995; 108: 1541–1552.

    CAS  PubMed  Google Scholar 

  8. Wang C, Yoo Y, Fan H, Kim E, Guan KL, Guan JL . Regulation of Integrin beta 1 recycling to lipid rafts by Rab1a to promote cell migration. J Biol Chem 2010; 285: 29398–29405.

    Article  CAS  Google Scholar 

  9. Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI . Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010; 11: 1246–1261.

    Article  CAS  Google Scholar 

  10. Bailly E, McCaffrey M, Touchot N, Zahraoui A, Goud B, Bornens M . Phosphorylation of two small GTP-binding proteins of the Rab family by p34cdc2. Nature 1991; 350: 715–718.

    Article  CAS  Google Scholar 

  11. Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, Roy CR . Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 2011; 477: 103–106.

    Article  CAS  Google Scholar 

  12. Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A . The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010; 329: 946–949.

    Article  Google Scholar 

  13. Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP . De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 2011; 333: 453–456.

    Article  CAS  Google Scholar 

  14. Cherfils J, Zeghouf M . Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 2013; 93: 269–309.

    Article  CAS  Google Scholar 

  15. Barrowman J, Bhandari D, Reinisch K, Ferro-Novick S . TRAPP complexes in membrane traffic: convergence through a common Rab. Nat Rev Mol Cell Biol 2010; 11: 759–763.

    Article  CAS  Google Scholar 

  16. Frasa MAM, Koessmeier KT, Ahmadian MR, VMM Braga . Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 2012; 13: 67–73.

    Article  CAS  Google Scholar 

  17. Lee MCS, Miller EA, Goldberg J, Orci L, Schekman R . Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 2004; 20: 87–123.

    Article  CAS  Google Scholar 

  18. Allan BB, Moyer BD, Balch WE . Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 2000; 289: 444–448.

    Article  CAS  Google Scholar 

  19. Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M . The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol 2003; 160: 201–212.

    Article  CAS  Google Scholar 

  20. Satoh A, Wang Y, Malsam J, Beard MB, Warren G . Golgin-84 is a rab1 binding partner involved in Golgi structure. Traffic 2003; 4: 153–161.

    Article  CAS  Google Scholar 

  21. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  Google Scholar 

  22. Kim I, Xu W, Reed JC . Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7: 1013–1030.

    Article  CAS  Google Scholar 

  23. Roberg KJ, Bickel S, Rowley N, Kaiser CA . Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST78. Genetics 1997; 147: 1569–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Drenan RM, Liu X, Bertram PG, Zheng XFS . FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the golgi apparatus. J Biol Chem 2004; 279: 772–778.

    Article  CAS  Google Scholar 

  25. Liu X, Zheng XFS . Endoplasmic reticulum and golgi localization sequences for mammalian target of rapamycin. Mol Biol Cell 2007; 18: 1073–1082.

    Article  CAS  Google Scholar 

  26. Puria R, Zurita-Martinez SA, Cardenas ME . Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae. Proc Natl Acad Sci 2008; 105: 7194–7199.

    Article  CAS  Google Scholar 

  27. Demmel L, Beck M, Klose C, Schlaitz AL, Gloor Y, Hsu PP et al. Nucleocytoplasmic shuttling of the Golgi phosphatidylinositol 4-kinase Pik1 is regulated by 14-3-3 proteins and coordinates Golgi function with cell growth. Mol Biol Cell 2008; 19: 1046–1061.

    Article  CAS  Google Scholar 

  28. Han J, Li E, Chen L, Zhang Y, Wei F, Liu J et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 2015; 524: 243–246.

    Article  CAS  Google Scholar 

  29. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to akt-dependent cell growth. Cell Metab 2008; 8: 224–236.

    Article  CAS  Google Scholar 

  30. Abraham RT . Making sense of amino acid sensing. Science 2015; 347: 128–129.

    Article  CAS  Google Scholar 

  31. Sanchez-Gurmaches J, Guertin David A . mTORC1 gRABs the Golgi. Cancer Cell 2014; 26: 601–603.

    Article  CAS  Google Scholar 

  32. Li L, Kim E, Yuan H, Inoki K, Goraksha-Hicks P, Schiesher RL et al. Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem 2010; 285: 19705–19709.

    Article  CAS  Google Scholar 

  33. Thomas Janice D, Zhang Y-J, Wei Y-H, Cho J-H, Morris Laura E, Wang H-Y et al. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014; 26: 754–769.

    Article  CAS  Google Scholar 

  34. Xu BH, Li XX, Yang Y, Zhang MY, Rao HL, Wang HY et al. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A. Oncotarget 2015; 6: 20813–20828.

    PubMed  PubMed Central  Google Scholar 

  35. Efeyan A, Zoncu R, Sabatini DM . Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 2012; 18: 524–533.

    Article  CAS  Google Scholar 

  36. Li H, Tsang C, Watkins M, Bertram P, Zheng X . Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 2006; 442: 1058–1061.

    Article  CAS  Google Scholar 

  37. Tsang C, Li H, Zheng X . Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 2007; 26: 448–458.

    Article  CAS  Google Scholar 

  38. Kopan R . Notch signaling. Cold Spring Harb Perspect Biol 2012; 4: a011213.

    Article  Google Scholar 

  39. Charng WL, Yamamoto S, Jaiswal M, Bayat V, Xiong B, Zhang K et al. Drosophila Tempura, a novel protein prenyltransferase alpha subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol 2014; 12: e1001777.

    Article  Google Scholar 

  40. Huttenlocher A, Horwitz AR . Integrins in cell migration. Cold Spring Harb Perspect Biol 2011; 3: a005074.

    Article  Google Scholar 

  41. He C, Klionsky DJ . Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67–93.

    Article  CAS  Google Scholar 

  42. Meiling-Wesse K, Epple UD, Krick R, Barth H, Appelles A, Voss C et al. Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem 2005; 280: 33669–33678.

    Article  CAS  Google Scholar 

  43. Wang J, Menon S, Yamasaki A, Chou HT, Walz T, Jiang Y et al. Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. Proc Natl Acad Sci USA 2013; 110: 9800–9805.

    Article  CAS  Google Scholar 

  44. Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S et al. Ypt1/Rab1 regulates Hrr25/CK1delta kinase activity in ER-Golgi traffic and macroautophagy. J Cell Biol 2015; 210: 273–285.

    Article  CAS  Google Scholar 

  45. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA et al. alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 2010; 190: 1023–1037.

    Article  CAS  Google Scholar 

  46. Zhuang X, Adipietro KA, Datta S, Northup JK, Ray K . Rab1 small GTP-binding protein regulates cell surface trafficking of the human calcium-sensing receptor. Endocrinology 2010; 151: 5114–5123.

    Article  CAS  Google Scholar 

  47. Wu G . regulation of the trafficking and function of g protein-coupled receptors by Rab1 GTPase in cardiomyocytes. Methods Enzymol 2008; 438: 227–238.

    Article  CAS  Google Scholar 

  48. Bao ZS, Li MY, Wang JY, Zhang CB, Wang HJ, Yan W et al. Prognostic value of a nine-gene signature in glioma patients based on mRNA expression profiling. CNS Neurosci Ther 2014; 20: 112–118.

    Article  CAS  Google Scholar 

  49. Abd Elmageed ZY, Yang Y, Thomas R, Ranjan M, Mondal D, Moroz K et al. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells 2014; 32: 983–997.

    Article  CAS  Google Scholar 

  50. Shimada K, Uzawa K, Kato M, Endo Y, Shiiba M, Bukawa H et al. Aberrant expression of RAB1A in human tongue cancer. Br J Cancer 2005; 92: 1915–1921.

    Article  CAS  Google Scholar 

  51. Zhai H, Song B, Xu X, Zhu W, Ju J . Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene 2013; 32: 1570–1579.

    Article  CAS  Google Scholar 

  52. He H, Dai F, Yu L, She X, Zhao Y, Jiang J et al. Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr 2002; 10: 231–242.

    Article  CAS  Google Scholar 

  53. Nalesnik MA, Tseng G, Ding Y, Xiang G-S, Zheng ZL, Yu Y et al. Gene deletions and amplifications in human hepatocellular carcinomas: correlation with hepatocyte growth regulation. Am J Pathol 2012; 180: 1495–1508.

    Article  CAS  Google Scholar 

  54. Nikoshkov A, Broliden K, Attarha S, Sviatoha V, Hellstrom AC, Mints M et al. Expression pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes in normal and cancer cervical tissues. Int J Oncol 2015; 46: 107–112.

    Article  CAS  Google Scholar 

  55. Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M et al. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 2014; 33: 2790–2800.

    Article  CAS  Google Scholar 

  56. Jiang HL, Sun HF, Gao SP, Li LD, Hu X, Wu J et al. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-beta/SMAD signaling. Oncotarget 2015; 6: 16352–16365.

    PubMed  PubMed Central  Google Scholar 

  57. Yang Y, Hou N, Wang X, Wang L, Chang S, He K et al. miR-15b-5p induces endoplasmic reticulum stress and apoptosis in human hepatocellular carcinoma, both in vitro and in vivo, by suppressing Rab1A. Oncotarget 2015; 6: 16227–16238.

    PubMed  PubMed Central  Google Scholar 

  58. Wu G, Yussman MG, Barrett TJ, Hahn HS, Osinska H, Hilliard GM et al. Increased myocardial Rab GTPase expression: a consequence and cause of cardiomyopathy. Circ Res 2001; 89: 1130–1137.

    Article  CAS  Google Scholar 

  59. Filipeanu CM, Zhou F, Wu G . Analysis of Rab1 function in cardiomyocyte growth. Methods Enzymol 2008; 438: 217–226.

    Article  CAS  Google Scholar 

  60. Wei L, Yuan M, Zhou R, Bai Q, Zhang W, Zhang M et al. MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a. J Cardiovasc Pharmacol 2015; 65: 357–363.

    Article  CAS  Google Scholar 

  61. Sciarretta S, Volpe M, Sadoshima J . Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014; 114: 549–564.

    Article  CAS  Google Scholar 

  62. Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S et al. Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol 2015; 14: 855–866.

    Article  CAS  Google Scholar 

  63. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B et al. α-Synuclein blocks ER-golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 2006; 313: 324–328.

    Article  CAS  Google Scholar 

  64. Coune PG, Bensadoun JC, Aebischer P, Schneider BL . Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson's disease. J Parkinsons Dis 2011; 1: 373–387.

    CAS  PubMed  Google Scholar 

  65. Sherwood Racquel K, Roy Craig R . A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe 2013; 14: 256–268.

    Article  Google Scholar 

  66. Stein M-P, Müller MP, Wandinger-Ness A . Bacterial pathogens commandeer rab GTPases to establish intracellular niches. Traffic 2012; 13: 1565–1588.

    Article  CAS  Google Scholar 

  67. Kumar A, Shetty J, Kumar B, Blanton SH . Confirmation of linkage and refinement of the RP28 locus for autosomal recessive retinitis pigmentosa on chromosome 2p14-p15 in an Indian family. Mol Vis 2004; 10: 399–402.

    PubMed  Google Scholar 

  68. Huang W, Wu G, Wang GY . Cell type-specific and light-dependent expression of Rab1 and Rab6 GTPases in mammalian retinas. Vis Neurosci 2009; 26: 443–452.

    Article  Google Scholar 

  69. Alexander KR, Fishman GA . Prolonged rod dark adaptation in retinitis pigmentosa. Br J Ophthalmol 1984; 68: 561–569.

    Article  CAS  Google Scholar 

  70. Park JS, Heo JS, Chang HS, Choi IS, Kim MK, Lee JU et al. Association analysis of member RAS oncogene family gene polymorphisms with aspirin intolerance in asthmatic patients. DNA Cell Biol 2014; 33: 155–161.

    Article  CAS  Google Scholar 

  71. Cervigne NK, Machado J, Goswami RS, Sadikovic B, Bradley G, Perez-Ordonez B et al. Recurrent genomic alterations in sequential progressive leukoplakia and oral cancer: drivers of oral tumorigenesis? Hum Mol Genet 2014; 23: 2618–2628.

    Article  CAS  Google Scholar 

  72. Hwang YS, Park KK, Chung WY . Kalopanaxsaponin A inhibits the invasion of human oral squamous cell carcinoma by reducing metalloproteinase-9 mRNA stability and protein trafficking. Biol Pharm Bull 2012; 35: 289–300.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Related work in authors’ laboratories was supported by NIH R01 grants CA123391, CA166575 and CA173519, the National Natural Science Foundation of China, grant nos: 81171891, 81270035 and 81572440, the Recruitment Program of Global Experts, the Lead Talent of Guangdong Province, the Natural Science Foundation of Guangdong Province for Distinguished Young Scholar (no: 2015A030306047), the Research Fund of State Key Laboratory of Oncology in South China, and Shanghai Pujiang Program 15PJ1404900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X F S Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XZ., Li, XX., Zhang, YJ. et al. Rab1 in cell signaling, cancer and other diseases. Oncogene 35, 5699–5704 (2016). https://doi.org/10.1038/onc.2016.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.81

  • Springer Nature Limited

This article is cited by

Navigation