Skip to main content

Advertisement

Log in

Tumor cell survival dependence on the DHX9 DExH-box helicase

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

The NTP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, and microRNA-mediated control, DNA replication and maintenance of genomic stability. DHX9 has also been implicated in tumor cell maintenance and drug response. Here we report that inhibition of DHX9 expression is lethal to human cancer cell lines and murine Eμ−Myc lymphomas. Using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged (6 months) suppression of DHX9 does not result in any deleterious effects at the organismal level. Body weight, blood biochemistry and histology of various tissues were comparable to control mice. Global gene expression profiling revealed that, although reduction of DHX9 expression resulted in multiple transcriptome changes, these were relatively benign and did not lead to any discernible phenotype. Our results demonstrate a robust tolerance for systemic DHX9 suppression in vivo and support the targeting of DHX9 as an effective and specific chemotherapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang S, Grosse F . Nuclear DNA helicase II unwinds both DNA and RNA. Biochemistry 1994; 33: 3906–3912.

    Article  CAS  PubMed  Google Scholar 

  2. Jain A, Bacolla A, Chakraborty P, Grosse F, Vasquez KM . Human DHX9 helicase unwinds triple-helical DNA structures. Biochemistry 2010; 49: 6992–6999.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang SS, Grosse F . Purification and characterization of two DNA helicases from calf thymus nuclei. J Biol Chem 1991; 266: 20483–20490.

    CAS  PubMed  Google Scholar 

  4. Lee CG, Hurwitz J . A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3' to 5' direction. J Biol Chem 1992; 267: 4398–4407.

    CAS  PubMed  Google Scholar 

  5. Lee CG, Hurwitz J . Human RNA helicase A is homologous to the maleless protein of Drosophila. J Biol Chem 1993; 268: 16822–16830.

    CAS  PubMed  Google Scholar 

  6. Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 1994; 368: 32–38.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S, Grosse F . Domain structure of human nuclear DNA helicase II (RNA helicase A). J Biol Chem 1997; 272: 11487–11494.

    Article  CAS  PubMed  Google Scholar 

  8. Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD et al. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 1997; 90: 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  9. Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD . BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 1998; 19: 254–256.

    Article  CAS  PubMed  Google Scholar 

  10. Huo L, Wang YN, Xia W, Hsu SC, Lai CC, Li LY et al. RNA helicase A is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. PNAS USA 2010; 107: 16125–16130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tetsuka T, Uranishi H, Sanda T, Asamitsu K, Yang JP, Wong-Staal F et al. RNA helicase A interacts with nuclear factor kappaB p65 and functions as a transcriptional coactivator. Eur J Biochem 2004; 271: 3741–3751.

    Article  CAS  PubMed  Google Scholar 

  12. Hartman T, Qian S, Bolinger C, Fernandez S, Schoenberg D, Boris-Lawrie K . RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 2006; 13: 509–516.

    Article  CAS  PubMed  Google Scholar 

  13. Manojlovic Z, Stefanovic B . A novel role of RNA helicase A in regulation of translation of type I collagen mRNAs. RNA 2012; 18: 321–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robb GB, Rana TM . RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 2007; 26: 523–537.

    Article  CAS  PubMed  Google Scholar 

  15. Tang H, Gaietta GM, Fischer WH, Ellisman MH, Wong-Staal F . A cellular cofactor for the constitutive transport element of type D retrovirus. Science 1997; 276: 1412–1415.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Schlott B, Gorlach M, Grosse F . DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res 2004; 32: 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jain A, Bacolla A, Del Mundo IM, Zhao J, Wang G, Vasquez KM . DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Res 2013; 41: 10345–10357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakraborty P, Grosse F . Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair (Amst) 2011; 10: 654–665.

    Article  CAS  Google Scholar 

  19. Mills JR, Malina A, Lee T, Di Paola D, Larsson O, Miething C et al. RNAi screening uncovers Dhx9 as a modifier of ABT-737 resistance in an Eμ-myc/Bcl-2 mouse model. Blood 2013; 121: 3402–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee T, Di Paola D, Malina A, Mills JR, Kreps A, Grosse F et al. Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner. J Biol Chem 2014; 289: 22798–22814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin CJ, Nasr Z, Premsrirut PK, Porco JA Jr, Hippo Y, Lowe SW et al. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep 2012; 1: 325–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 2011; 145: 145–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hui L, Zheng Y, Yan Y, Bargonetti J, Foster DA . Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 2006; 25: 7305–7310.

    Article  CAS  PubMed  Google Scholar 

  24. Hoppe-Seyler F, Butz K . Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J Virol 1993; 67: 3111–3117.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Robert F, Roman W, Bramoulle A, Fellmann C, Roulston A, Shustik C et al. Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma. PNAS USA 2014; 111: 13421–13426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

  27. McJunkin K, Mazurek A, Premsrirut PK, Zuber J, Dow LE, Simon J et al. Reversible suppression of an essential gene in adult mice using transgenic RNA interference. PNAS USA 2011; 108: 7113–7118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol 2011; 29: 79–83.

    Article  CAS  PubMed  Google Scholar 

  29. Tang H, McDonald D, Middlesworth T, Hope TJ, Wong-Staal F . The carboxyl terminus of RNA helicase A contains a bidirectional nuclear transport domain. Mol Cell Biol 1999; 19: 3540–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calcabrini A, Garcia-Martinez JM, Gonzalez L, Tendero MJ, Ortuno MT, Crateri P et al. Inhibition of proliferation and induction of apoptosis in human breast cancer cells by lauryl gallate. Carcinogenesis 2006; 27: 1699–1712.

    Article  CAS  PubMed  Google Scholar 

  31. Trudel S, Stewart AK, Li Z, Shu Y, Liang SB, Trieu Y et al. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res 2007; 13: 621–629.

    Article  CAS  PubMed  Google Scholar 

  32. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  33. Campisi J, d'Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  34. Gartel AL, Tyner AL . The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002; 1: 639–649.

    CAS  PubMed  Google Scholar 

  35. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. PNAS USA 2006; 103: 1888–1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee CG, da Costa Soares V, Newberger C, Manova K, Lacy E, Hurwitz J . RNA helicase A is essential for normal gastrulation. PNAS USA 1998; 95: 13709–13713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walstrom KM, Schmidt D, Bean CJ, Kelly WG . RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans. Mech Dev 2005; 122: 707–720.

    Article  CAS  PubMed  Google Scholar 

  38. Parsyan A, Shahbazian D, Martineau Y, Petroulakis E, Alain T, Larsson O et al. The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. PNAS USA 2009; 106: 22217–22222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP et al. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 2012; 19: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  41. Davis BN, Hilyard AC, Lagna G, Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9: 604–611.

    Article  CAS  PubMed  Google Scholar 

  43. Saporita AJ, Chang HC, Winkeler CL, Apicelli AJ, Kladney RD, Wang J et al. RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis. Cancer Res 2011; 71: 6708–6717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mazurek A, Park Y, Miething C, Wilkinson JE, Gillis J, Lowe SW et al. Acquired dependence of acute myeloid leukemia on the DEAD-box RNA helicase DDX5. Cell Rep 2014; 7: 1887–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Malumbres M, Barbacid M . To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1: 222–231.

    Article  CAS  PubMed  Google Scholar 

  47. Barde I, Salmon P, Trono D . Production and titration of lentiviral vectors. Curr Protoc Neurosci 2010 (Chapter 4): Unit 4.21.

Download references

Acknowledgements

We thank Francis Robert for performing tail-vein injections of lymphoma cells into mice. TL was supported by a Maysie MacSporran graduate studentship and fellowships from the CIHR-sponsored Chemical Biology and Systems Biology Training Programs. This work is supported by grants from the Canadian Cancer Society Research Institute (no. 701362) and National Institutes of Health (CA163291) to JP and grants from the Swedish Research Council and the Swedish Cancer Society to OL.

Author contributions

TL performed all experiments under the guidance of JP. MP provided the histopathological analysis of tissue sections. OL analyzed the gene expression data. TL and JP wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Pelletier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Paquet, M., Larsson, O. et al. Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene 35, 5093–5105 (2016). https://doi.org/10.1038/onc.2016.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.52

  • Springer Nature Limited

This article is cited by

Navigation