Skip to main content

Advertisement

Log in

The primacy of NF1 loss as the driver of tumorigenesis in neurofibromatosis type 1-associated plexiform neurofibromas

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Neurofibromatosis type 1 (NF1) is a common tumor-predisposition disorder due to germline mutations in the tumor suppressor gene NF1. A virtually pathognomonic finding of NF1 is the plexiform neurofibroma (PN), a benign, likely congenital tumor that arises from bi-allelic inactivation of NF1. PN can undergo transformation to a malignant peripheral nerve sheath tumor, an aggressive soft-tissue sarcoma. To better understand the non-NF1 genetic contributions to PN pathogenesis, we performed whole-exome sequencing, RNASeq profiling and genome-wide copy-number determination for 23 low-passage Schwann cell cultures established from surgical PN material with matching germline DNA. All resected tumors were derived from routine debulking surgeries. None of the tumors were considered at risk for malignant transformation at the time; for example, there was no pain or rapid growth. Deep (~500X) NF1 exon sequencing was also conducted on tumor DNA. Non-NF1 somatic mutation verification was performed using the Ampliseq/IonTorrent platform. We identified 100% of the germline NF1 mutations and found somatic NF1 inactivation in 74% of the PN. One individual with three PNs had different NF1 somatic mutations in each tumor. The median number of somatic mutations per sample, including NF1, was one (range 0–8). NF1 was the only gene that was recurrently somatically inactivated in multiple tumors. Gene Set Enrichment Analysis of transcriptome-wide tumor RNA sequencing identified five significant (FDR<0.01) and seven trending (0.01⩽FDR<0.02) gene sets related to DNA replication, telomere maintenance and elongation, cell cycle progression, signal transduction and cell proliferation. We found no recurrent non-NF1 locus copy-number variation in PN. This is the first multi-sample whole-exome and whole-transcriptome sequencing study of NF1-associated PN. Taken together with concurrent copy-number data, our comprehensive genetic analysis reveals the primacy of NF1 loss as the driver of PN tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jett K, Friedman JM . Clinical and genetic aspects of neurofibromatosis 1. Genet Med 2010; 12: 1–11.

    Article  Google Scholar 

  2. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 1988; 45: 575–578.

  3. Huson SM, Harper PS, Compston DA . Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 1988; 111 (Pt 6): 1355–1381.

    Article  Google Scholar 

  4. Mautner VF, Asuagbor FA, Dombi E, Funsterer C, Kluwe L, Wenzel R et al. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro Oncol 2008; 10: 593–598.

    Article  Google Scholar 

  5. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A . Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002; 39: 311–314.

    Article  CAS  Google Scholar 

  6. Uusitalo E, Rantanen M, Kallionpaa RA, Poyhonen M, Leppavirta J, Yla-Outinen H et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 2016; 34: 1978–1986.

    Article  Google Scholar 

  7. Kim A, Gillespie A, Dombi E, Goodwin A, Goodspeed W, Fox E et al. Characteristics of children enrolled in treatment trials for NF1-related plexiform neurofibromas. Neurology 2009; 73: 1273–1279.

    Article  CAS  Google Scholar 

  8. Babovic-Vuksanovic D, Widemann BC, Dombi E, Gillespie A, Wolters PL, Toledo-Tamula MA et al. Phase I trial of pirfenidone in children with neurofibromatosis 1 and plexiform neurofibromas. Pediatr Neurol 2007; 36: 293–300.

    Article  Google Scholar 

  9. Widemann BC, Babovic-Vuksanovic D, Dombi E, Wolters PL, Goldman S, Martin S et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer 2014; 61: 1598–1602.

    Article  CAS  Google Scholar 

  10. Weiss B, Widemann BC, Wolters P, Dombi E, Vinks AA, Cantor A et al. Sirolimus for non-progressive NF1-associated plexiform neurofibromas: an NF clinical trials consortium phase II study. Pediatr Blood Cancer 2014; 61: 982–986.

    Article  CAS  Google Scholar 

  11. Peltonen J, Jaakkola S, Lebwohl M, Renvall S, Risteli L, Virtanen I et al. Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest 1988; 59: 760–771.

    CAS  PubMed  Google Scholar 

  12. Stemmer-Rachamimov A, Nielsen GP. Pathologic and molecular diagnostic features of peripheral nerve sheath tumors in NF1. In: Upadhyaya M, Cooper DN (eds). Neurofibromatosis Type 1: Molecular and Cellular Biology. Springer: Heidlberg, 2012. pp 429–443.

  13. Serra E, Rosenbaum T, Winner U, Aledo R, Ars E, Estivill X et al. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum Mol Genet 2000; 9: 3055–3064.

    Article  CAS  Google Scholar 

  14. Maertens O, Brems H, Vandesompele J, De Raedt T, Heyns I, Rosenbaum T et al. Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum Mutat 2006; 27: 1030–1040.

    Article  CAS  Google Scholar 

  15. Sabbagh A, Pasmant E, Laurendeau I, Parfait B, Barbarot S, Guillot B et al. Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1. Hum Mol Genet 2009; 18: 2768–2778.

    Article  CAS  Google Scholar 

  16. Castle B, Baser ME, Huson SM, Cooper DN, Upadhyaya M . Evaluation of genotype-phenotype correlations in neurofibromatosis type 1. J Med Genet 2003; 40: e109.

    Article  CAS  Google Scholar 

  17. Pasmant E, Sabbagh A, Masliah-Planchon J, Ortonne N, Laurendeau I, Melin L et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst 2011; 103: 1713–1722.

    Article  CAS  Google Scholar 

  18. Beert E, Brems H, Daniels B, De Wever I, Van Calenbergh F, Schoenaers J et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chrom Cancer 2011; 50: 1021–1032.

    Article  CAS  Google Scholar 

  19. Luscan A, Shackleford G, Masliah-Planchon J, Laurendeau I, Ortonne N, Varin J et al. The activation of the WNT signaling pathway is a Hallmark in neurofibromatosis type 1 tumorigenesis. Clin Cancer Res 2014; 20: 358–371.

    Article  CAS  Google Scholar 

  20. Zhang M, Wang Y, Jones S, Sausen M, McMahon K, Sharma R et al. Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet 2014; 46: 1170–1172.

    Article  CAS  Google Scholar 

  21. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 2014; 46: 1227–1232.

    Article  CAS  Google Scholar 

  22. Hirbe AC, Dahiya S, Miller CA, Li T, Fulton RS, Zhang X et al. Whole exome sequencing reveals the order of genetic changes during malignant transformation and metastasis in a single patient with NF1-plexiform neurofibroma. Clin Cancer Res 2015; 21: 4201–4211.

    Article  CAS  Google Scholar 

  23. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J . A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310–315.

    Article  CAS  Google Scholar 

  24. Colman SD, Williams CA, Wallace MR . Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet 1995; 11: 90–92.

    Article  CAS  Google Scholar 

  25. Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER et al. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 2012; 3: 1194–1203.

    Article  Google Scholar 

  26. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010; 42: 715–721.

    Article  CAS  Google Scholar 

  27. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    Article  CAS  Google Scholar 

  28. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012; 44: 251–253.

    Article  CAS  Google Scholar 

  29. Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF . Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 2011; 71: 4686–4695.

    Article  CAS  Google Scholar 

  30. Buchstaller J, Clapp DW, Parada LF, Zhu Y. Cell of Origin and the Contribution of Microenvironment in NF1 Tumorigenesis and Therapeutic Implications. In: Upadhyaya M, Cooper DN (eds). Neurofibromatosis Type 1: Molecular and Cellular Biology. Springer: Heidelberg, 2012.

    Google Scholar 

  31. Wallace MR, Rasmussen SA, Lim IT, Gray BA, Zori RT, Muir D . Culture of cytogenetically abnormal schwann cells from benign and malignant NF1 tumors. Genes Chromosomes Cancer 2000; 27: 117–123.

    Article  CAS  Google Scholar 

  32. Laycock-van Spyk S, Thomas N, Cooper DN, Upadhyaya M . Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 2011; 5: 623–690.

    Article  Google Scholar 

  33. Upadhyaya M, Spurlock G, Monem B, Thomas N, Friedrich RE, Kluwe L et al. Germline and somatic NF1 gene mutations in plexiform neurofibromas. Hum Mutat 2008; 29: E103–E111.

    Article  Google Scholar 

  34. Emi M, Matsushima M, Katagiri T, Yoshimoto M, Kasumi F, Yokota T et al. Multiplex mutation screening of the BRCA1 gene in 1000 Japanese breast cancers. Jpn J Cancer Res 1998; 89: 12–16.

    Article  CAS  Google Scholar 

  35. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 2003; 33: 463–465.

    Article  CAS  Google Scholar 

  36. Levy P, Ripoche H, Laurendeau I, Lazar V, Ortonne N, Parfait B et al. Microarray-based identification of tenascin C and tenascin XB, genes possibly involved in tumorigenesis associated with neurofibromatosis type 1. Clin Cancer Res 2007; 13: 398–407.

    Article  CAS  Google Scholar 

  37. Pasmant E, Ortonne N, Rittie L, Laurendeau I, Levy P, Lazar V et al. Differential expression of CCN1/CYR61, CCN3/NOV, CCN4/WISP1, and CCN5/WISP2 in neurofibromatosis type 1 tumorigenesis. J Neuropathol Exp Neurol 2010; 69: 60–69.

    Article  CAS  Google Scholar 

  38. Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S et al. Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 2009; 1: 236–248.

    Article  CAS  Google Scholar 

  39. Smithson LJ, Anastasaki C, Chen R, Toonen JA, Williams SB, Gutmann DH . Contextual signaling in cancer. Semin Cell Dev Biol 2016; 58: 118–126.

    Article  CAS  Google Scholar 

  40. Upadhyaya M, Spurlock G, Thomas L, Thomas NS, Richards M, Mautner VF et al. Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis. Hum Mutat 2012; 33: 763–776.

    Article  CAS  Google Scholar 

  41. Muir D, Neubauer D, Lim IT, Yachnis AT, Wallace MR . Tumorigenic properties of neurofibromin-deficient neurofibroma Schwann cells. Am J Pathol 2001; 158: 501–513.

    Article  CAS  Google Scholar 

  42. Pemov A, Sung H, Hyland PL, Sloan JL, Ruppert SL, Baldwin AM et al. Genetic modifiers of neurofibromatosis Type 1-Associated Cafe-au-Lait macule count identified using multi-platform analysis. PLOS Genet 2014; 10: e1004575.

    Article  Google Scholar 

  43. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

    Article  CAS  Google Scholar 

  44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  45. Dewan R, Pemov A, Kim HJ, Butman JA, Morgan K, Vasquez RA et al. Evidence of multiple independent tumor initiation events in neurofibromatosis type 2-associated vestibular schwannomas. Neuro Oncol 2014; 17: 566–573.

    Article  Google Scholar 

  46. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213–219.

    Article  CAS  Google Scholar 

  47. Youn A, Simon R . Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 2011; 27: 175–181.

    Article  CAS  Google Scholar 

  48. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  Google Scholar 

  49. Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ et al. Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res 2010; 20: 1420–1431.

    Article  CAS  Google Scholar 

  50. Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

    Article  Google Scholar 

  51. Teer JK, Green ED, Mullikin JC, Biesecker LG . VarSifter: visualizing and analyzing exome-scale sequence variation data on a desktop computer. Bioinformatics 2012; 28: 599–600.

    Article  CAS  Google Scholar 

  52. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  53. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  Google Scholar 

  54. Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D . The UCSC known genes. Bioinformatics 2006; 22: 1036–1046.

    Article  CAS  Google Scholar 

  55. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    Article  Google Scholar 

  56. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218.

    Article  CAS  Google Scholar 

  57. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP . GenePattern 2.0. Nat Genet 2006; 38: 500–501.

    Article  CAS  Google Scholar 

  58. Van Loo P, Nilsen G, Nordgard SH, Vollan HK, Borresen-Dale AL, Kristensen VN et al. Analyzing cancer samples with SNP arrays. Methods Mol Biol 2012; 802: 57–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding provided by the Intramural Research Programs of the National Human Genome Research Institute, the Center for Cancer Research of the National Cancer Institute and the Division of Cancer Epidemiology and Genetics of the National Cancer Institute. We thank the members of the NISC Comparative Sequencing Program: Betty Barnabas, PhD, Robert Blakesley, PhD, Gerry Bouffard, PhD, Shelise Brooks, BS, Holly Coleman, MSc, Mila Dekhtyar, MSc, Michael Gregory, MSc, Xiaobin Guan, PhD, Jyoti Gupta, MSc, Joel Han, BS, Shi-ling Ho, BS, Richelle Legaspi, MSc, Quino Maduro, BS, Cathy Masiello, MSc, Baishali Maskeri, PhD, Jenny McDowell, PhD, Casandra Montemayor, MSc, Morgan Park, PhD, Nancy Riebow, BS, Karen Schandler, MSc, Brian Schmidt, BS, Christina Sison, BS, Mal Stantripop, BS, James Thomas, PhD, Pam Thomas, PhD, Meg Vemulapalli, MSc, Alice Young, BA. We also thank the members of the NCI DCEG Cancer Genomics Research Laboratory: Michael Beerman, Aaron J Bouk, Seth Brodie, Laurie Burdett, Salma Chowdhury, Charles Chung, Nathan Cole, Michael Cullen, Casey Dagnall, Danielle Debacker, Sadie Frary, Chris Hautman, Belynda Hicks, Herb Higson, Keisha Hines-Harris, Amy Hutchinson, Kristie Jones, Eric Karlins, Sally Larson, Kerrie Lashley, Hyo Jung Lee, Shengchao Li, Tong Li, Wen Luo, Mike Malasky, Michelle Manning, Charles McCoy, Jason Mitchell, Adri O’Neil, Padma Ramya Packirisamy, Timothy Pelc, David Roberson, Aaron Rodriguez, Marianne Siler, Shalabh Suman, Kedest Teshome, Julio Tun, Sue Turner, Bill Utermahlen, Aurelie Vogt, Sarah Wagner, Mingyi Wang, Zhaoming Wang, Kathleen Wyatt, Qi Yang, Meredith Yeager, Sherry Yu, Xijun Zhang, Weiyin Zhou, Bin Zhu. MRW acknowledges funding from the Department of Defense (DAMD17-98-1-8609, DAMD17-00-1-0549), the National Institutes of Health (R29 NS31550), and the Children's Tumor Foundation supporting the development of the PN cultures over a 17-year span. Finally, we thank the patients who enlisted the help of their physicians to contribute tissues to research.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D R Stewart.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pemov, A., Li, H., Patidar, R. et al. The primacy of NF1 loss as the driver of tumorigenesis in neurofibromatosis type 1-associated plexiform neurofibromas. Oncogene 36, 3168–3177 (2017). https://doi.org/10.1038/onc.2016.464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.464

  • Springer Nature Limited

This article is cited by

Navigation