Skip to main content

Advertisement

Log in

Non-metabolic functions of glycolytic enzymes in tumorigenesis

  • Review
  • Published:
Oncogene Submit manuscript

Abstract

Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dang CV, Semenza GL . Oncogenic alterations of metabolism. Trends Biochem Sci 1999; 24: 68–72.

    CAS  PubMed  Google Scholar 

  3. Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, Sonveaux P et al. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PloS One 2013; 8: e75154.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Suda T, Takubo K, Semenza GL . Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9: 298–310.

    CAS  PubMed  Google Scholar 

  5. Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G . Serine and glycine metabolism in cancer. Trends Biochem Sci 2014; 39: 191–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2015; 90: 927–963.

    PubMed  Google Scholar 

  7. Lincet H, Icard P . How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene 2015; 34: 3751–3759.

    CAS  PubMed  Google Scholar 

  8. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013; 24: 213–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 2012; 337: 975–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334: 1278–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gruning NM, Rinnerthaler M, Bluemlein K, Mulleder M, Wamelink MM, Lehrach H et al. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 2011; 14: 415–427.

    PubMed  PubMed Central  Google Scholar 

  12. Li S, Swanson SK, Gogol M, Florens L, Washburn MP, Workman JL et al. Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism. Mol Cell 2015; 60: 408–421.

    CAS  PubMed  Google Scholar 

  13. Kim JW, Dang CV . Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 2005; 30: 142–150.

    CAS  PubMed  Google Scholar 

  14. Pastorino JG, Hoek JB . Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 2003; 10: 1535–1551.

    CAS  PubMed  Google Scholar 

  15. Haga A, Funasaka T, Niinaka Y, Raz A, Nagase H . Autocrine motility factor signaling induces tumor apoptotic resistance by regulations Apaf-1 and Caspase-9 apoptosome expression. Int J Cancer 2003; 107: 707–714.

    CAS  PubMed  Google Scholar 

  16. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007; 129: 983–997.

    CAS  PubMed  Google Scholar 

  17. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N et al. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene 2007; 26: 2606–2620.

    CAS  PubMed  Google Scholar 

  18. Fan J, Krautkramer KA, Feldman JL, Denu JM . Metabolic regulation of histone post-translational modifications. ACS Chem Biol 2015; 10: 95–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu C, Thompson CB . Metabolic regulation of epigenetics. Cell Metab 2012; 16: 9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryall JG, Cliff T, Dalton S, Sartorelli V . Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell 2015; 17: 651–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li S, Kong L, Yu X, Zheng Y . Host-virus interactions: from the perspectives of epigenetics. Rev Med Virol 2014; 24: 223–241.

    CAS  PubMed  Google Scholar 

  22. Boukouris AE, Zervopoulos SD, Michelakis ED . Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends Biochem Sci 2016; 41: 712–730.

    CAS  PubMed  Google Scholar 

  23. Huang X, Holden HM, Raushel FM . Channeling of substrates and intermediates in enzyme-catalyzed reactions. Ann Rev Biochem 2001; 70: 149–180.

    CAS  PubMed  Google Scholar 

  24. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res 2016; 44: 636–647.

    CAS  PubMed  Google Scholar 

  25. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 2014; 158: 84–97.

    CAS  PubMed  Google Scholar 

  26. Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O et al. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol 2010; 42: 1672–1680.

    CAS  PubMed  Google Scholar 

  27. Berger F, Lau C, Dahlmann M, Ziegler M . Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 2005; 280: 36334–36341.

    CAS  PubMed  Google Scholar 

  28. Castonguay Z, Auger C, Thomas SC, Chahma M, Appanna VD . Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes. Biochem Biophys Res Commun 2014; 454: 172–177.

    CAS  PubMed  Google Scholar 

  29. Zheng L, Roeder RG, Luo Y . S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 2003; 114: 255–266.

    CAS  PubMed  Google Scholar 

  30. Katoh Y, Ikura T, Hoshikawa Y, Tashiro S, Ito T, Ohta M et al. Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell 2011; 41: 554–566.

    CAS  PubMed  Google Scholar 

  31. Kera Y, Katoh Y, Ohta M, Matsumoto M, Takano-Yamamoto T, Igarashi K . Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J Biol Chem 2013; 288: 13592–13601.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S, Shogren-Knaak MA . Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Proc Natl Acad Sci USA 2008; 105: 18243–18248.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Shogren-Knaak MA . The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J Biol Chem 2009; 284: 9411–9417.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 2009; 174: 1619–1628.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Friis RM, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC . A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 2009; 37: 3969–3980.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McBrian MA, Behbahan IS, Ferrari R, Su T, Huang TW, Li K et al. Histone acetylation regulates intracellular pH. Mol Cell 2013; 49: 310–321.

    CAS  PubMed  Google Scholar 

  37. Liu XS, Little JB, Yuan ZM . Glycolytic metabolism influences global chromatin structure. Oncotarget 2015; 6: 4214–4225.

    PubMed  PubMed Central  Google Scholar 

  38. Cai L, Sutter BM, Li B, Tu BP . Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42: 426–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thangaraju M, Gopal E, Martin PM, Ananth S, Smith SB, Prasad PD et al. SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Cancer Res 2006; 66: 11560–11564.

    CAS  PubMed  Google Scholar 

  40. Latham T, Mackay L, Sproul D, Karim M, Culley J, Harrison DJ et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 2012; 40: 4794–4803.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Su X, Wellen KE, Rabinowitz JD . Metabolic control of methylation and acetylation. Curr Opin Chem Biol 2016; 30: 52–60.

    CAS  PubMed  Google Scholar 

  42. Ringel AE, Ryznar R, Picariello H, Huang KL, Lazarus AG, Holmes SG . Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. PLoS Genet 2013; 9: e1003871.

    PubMed  PubMed Central  Google Scholar 

  43. Xu YF, Zhao X, Glass DS, Absalan F, Perlman DH, Broach JR et al. Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation. Mol Cell 2012; 48: 52–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilson MJ, Shivapurkar N, Poirier LA . Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet. Biochem J 1984; 218: 987–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka Y, Yano H, Ogasawara S, Yoshioka S, Imamura H, Okamoto K et al. Mild Glucose Starvation Induces KDM2A-Mediated H3K36me2 Demethylation through AMPK To Reduce rRNA Transcription and Cell Proliferation. Mol Cell Biol 2015; 35: 4170–4184.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB . Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518: 413–416.

    CAS  PubMed  Google Scholar 

  47. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150: 685–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Goel A, Mathupala SP, Pedersen PL . Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003; 278: 15333–15340.

    CAS  PubMed  Google Scholar 

  49. Johnson C, Warmoes MO, Shen X, Locasale JW . Epigenetics and cancer metabolism. Cancer Lett 2015; 356: 309–314.

    CAS  PubMed  Google Scholar 

  50. Galdieri L, Zhang T, Rogerson D, Vancura A . Reduced histone expression or a defect in chromatin assembly induces respiration. Mol Cell Biol 2016; 36: 1064–1077.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mehrotra S, Galdieri L, Zhang T, Zhang M, Pemberton LF, Vancura A . Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism. Biochim Biophys Acta 2014; 1839: 751–763.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Keller KE, Doctor ZM, Dwyer ZW, Lee YS . SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 2014; 53: 700–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao X, Wang H, Yang JJ, Liu X, Liu ZR . Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell 2012; 45: 598–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A . ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett 2000; 473: 47–52.

    CAS  PubMed  Google Scholar 

  55. Lee J, Kim HK, Han YM, Kim J . Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol 2008; 40: 1043–1054.

    CAS  PubMed  Google Scholar 

  56. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011; 145: 732–744.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M et al. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 2015; 34: 1349–1370.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lucarelli G, Rutigliano M, Sanguedolce F, Galleggiante V, Giglio A, Cagiano S et al. Increased expression of the autocrine motility factor is associated with poor prognosis in patients with clear cell-renal cell carcinoma. Medicine 2015; 94: e2117.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fairbank M, St-Pierre P, Nabi IR . The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Mol Biosyst 2009; 5: 793–801.

    CAS  PubMed  Google Scholar 

  60. Araki K, Shimura T, Yajima T, Tsutsumi S, Suzuki H, Okada K et al. Phosphoglucose isomerase/autocrine motility factor promotes melanoma cell migration through ERK activation dependent on autocrine production of interleukin-8. J Biol Chem 2009; 284: 32305–32311.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niinaka Y, Harada K, Fujimuro M, Oda M, Haga A, Hosoki M et al. Silencing of autocrine motility factor induces mesenchymal-to-epithelial transition and suppression of osteosarcoma pulmonary metastasis. Cancer Res 2010; 70: 9483–9493.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kho DH, Zhang T, Balan V, Wang Y, Ha SW, Xie Y et al. Autocrine motility factor modulates EGF-mediated invasion signaling. Cancer Res 2014; 74: 2229–2237.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kho DH, Nangia-Makker P, Balan V, Hogan V, Tait L, Wang Y et al. Autocrine motility factor promotes HER2 cleavage and signaling in breast cancer cells. Cancer Res 2013; 73: 1411–1419.

    CAS  PubMed  Google Scholar 

  64. Fu M, Li L, Albrecht T, Johnson JD, Kojic LD, Nabi IR . Autocrine motility factor/phosphoglucose isomerase regulates ER stress and cell death through control of ER calcium release. Cell Death Differ 2011; 18: 1057–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun S, Liang X, Zhang X, Liu T, Shi Q, Song Y et al. Phosphoglycerate kinase-1 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in breast cancer. Br J Cancer 2015; 112: 1332–1339.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell 2016; 61: 705–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. He CL, Bian YY, Xue Y, Liu ZX, Zhou KQ, Yao CF et al. Pyruvate kinase M2 Activates mTORC1 by phosphorylating AKT1S1. Sci Rep 2016; 6: 21524.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kong L, Li S, Yu X, Fang X, Xu A, Huang M et al. Hepatitis C virus and its protein NS4B activate the cancer-related STAT3 pathway via the endoplasmic reticulum overload response. Arch Virol 2016; 161: 2149–2159.

    CAS  PubMed  Google Scholar 

  69. Adams V, Griffin LD, Gelb BD, McCabe ER . Protein kinase activity of rat brain hexokinase. Biochem Biophys Res Commun 1991; 177: 1101–1106.

    CAS  PubMed  Google Scholar 

  70. Faivre S, Kroemer G, Raymond E . Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5: 671–688.

    CAS  PubMed  Google Scholar 

  71. Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 2009; 29: 3991–4001.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ et al. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12: 10–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao Y, Butler EB, Tan M . Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4: e532.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gong L, Wei Y, Yu X, Peng J, Leng X . 3-Bromopyruvic acid, a hexokinase II inhibitor, is an effective antitumor agent on the hepatoma cells: in vitro and in vivo findings. Anti-Cancer Agents Med Chem 2014; 14: 771–776.

    CAS  Google Scholar 

  75. Ros S, Schulze A . Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab 2013; 1: 8.

    PubMed  PubMed Central  Google Scholar 

  76. Doherty JR, Cleveland JL . Targeting lactate metabolism for cancer therapeutics. J Clin Invest 2013; 123: 3685–3692.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Khalid MH, Shibata S, Hiura T . Effects of clotrimazole on the growth, morphological characteristics, and cisplatin sensitivity of human glioblastoma cells in vitro. J Neurosurg 1999; 90: 918–927.

    CAS  PubMed  Google Scholar 

  78. Penso J, Beitner R . Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol 1998; 342: 113–117.

    CAS  PubMed  Google Scholar 

  79. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 2012; 8: 839–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi SY, Xue H, Wu R, Fazli L, Lin D, Collins CC et al. The MCT4 gene: a novel, potential target for therapy of advanced prostate cancer. Clin. Cancer Res. 2016; 22: 2721–2733.

    CAS  PubMed  Google Scholar 

  81. Olson KA, Schell JC, Rutter J . Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem Sci 2016; 41: 219–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gancedo JM . Yeast carbon catabolite repression. Microbiol Mol Biol Rev 1998; 62: 334–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Popanda O, Fox G, Thielmann HW . Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta 1998; 1397: 102–117.

    CAS  PubMed  Google Scholar 

  84. Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y et al. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell 2014; 53: 75–87.

    CAS  PubMed  Google Scholar 

  85. Grosse F, Nasheuer HP, Scholtissek S, Schomburg U . Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. Eur J Biochem/FEBS 1986; 160: 459–467.

    CAS  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work cannot be cited here because of space limitation. We thank members of Li laboratory for critical reading of this manuscript. This work was funded by grants from National Nature Science Foundation of China (No. 31671335 to S Li; No. 31600046 to X Yu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Li, S. Non-metabolic functions of glycolytic enzymes in tumorigenesis. Oncogene 36, 2629–2636 (2017). https://doi.org/10.1038/onc.2016.410

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.410

  • Springer Nature Limited

This article is cited by

Navigation