Skip to main content
Log in

Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling

  • Short Communication
  • Published:
Oncogene Submit manuscript

A Corrigendum to this article was published on 03 April 2017

Abstract

Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 co-receptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ɛ, γ and GSK3. Among these, activation of CK1ɛ, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ɛ is activated by the PP2A/PR61ɛ phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ɛ with Frizzled-bound PR61ɛ regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ɛ and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Clevers H, Nusse R . Wnt/β-catenin signaling and disease. Cell 2012; 149: 1192–1205.

    Article  CAS  Google Scholar 

  2. MacDonald BT, He X . Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4: a007880.

    Article  Google Scholar 

  3. Cruciat CM . Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31: 46–55.

    Article  CAS  Google Scholar 

  4. Yu J, Virshup DM . Updating the Wnt pathway. Biosci Rep 2014; 34: e00142.

    PubMed  PubMed Central  Google Scholar 

  5. Haÿ E, Laplantine E, Geoffroy V, Frain M, Kohler T, Müller R et al. N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol 2009; 29: 953–964.

    Article  Google Scholar 

  6. Casagolda D, Del Valle-Pérez B, Valls G, Lugilde E, Vinyoles M, Casado-Vela J et al. A p120-catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci 2010; 123: 2621–2631.

    Article  CAS  Google Scholar 

  7. Swiatek W, Tsai I-C, Klimowski L, Pepler A, Barnette J, Yost HJ et al. Regulation of casein kinase I epsilon activity by Wnt signaling. J Biol Chem 2004; 279: 13011–13017.

    Article  CAS  Google Scholar 

  8. Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L, García de Herreros A et al. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell 2014; 53: 444–457.

    Article  CAS  Google Scholar 

  9. Yamamoto H, Sakane H, Michiue T, Kikuchi A . Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling. Dev Cell 2008; 15: 37–48.

    Article  CAS  Google Scholar 

  10. Niehrs C, Shen J . Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010; 67: 2551–2562.

    Article  CAS  Google Scholar 

  11. Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L et al. Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 2008; 321: 1350–1353.

    Article  CAS  Google Scholar 

  12. Liang J, Fu Y, Cruciat CM, Jia S, Wang Y, Tong Z et al. Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation. Mol Cell Biol 2011; 31: 2577–2590.

    Article  CAS  Google Scholar 

  13. Tanneberger K, Pfister AS, Brauburger K, Schneikert J, Hadjihannas MV, Kriz V et al. Amer1/WTX couples Wnt-induced formation of PtdIns(4,5)P2 to LRP6 phosphorylation. EMBO J 2011; 30: 1433–1443.

    Article  CAS  Google Scholar 

  14. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010; 327: 459–463.

    Article  CAS  Google Scholar 

  15. Bilic J, Huang Y-L, Davidson G, Zimmermann T, Cruciat C-M, Bienz M et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007; 316: 1619–1622.

    Article  CAS  Google Scholar 

  16. Del Valle-Pérez B, Arqués O, Vinyoles M, de Herreros AG, Duñach M . Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol Cell Biol 2011; 31: 2877–2888.

    Article  Google Scholar 

  17. Mi K, Dolan PJ, Johnson GVW . The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem 2006; 281: 4787–4794.

    Article  CAS  Google Scholar 

  18. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E . LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’ s phosphorylation of beta -catenin. Proc Natl Acad Sci USA 2008; 105: 8032–8037.

    Article  CAS  Google Scholar 

  19. Taelman VF, Dobrowolski R, Plouhinec J-L, Fuentealba LC, Vorwald PP, Gumper I et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 2010; 143: 1136–1148.

    Article  CAS  Google Scholar 

  20. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 2012; 149: 1245–1256.

    Article  CAS  Google Scholar 

  21. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 2014; 158: 157–170.

    Article  CAS  Google Scholar 

  22. Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M . The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 2005; 17: 675–689.

    Article  CAS  Google Scholar 

  23. Cegielska a, Gietzen KF, Rivers A, Virshup DM . Autoinhibition of casein kinase I epsilon (CKI epsilon) is relieved by protein phosphatases and limited proteolysis. J Biol Chem 1998; 273: 1357–1364.

    Article  CAS  Google Scholar 

  24. Hsu W, Zeng L, Constantini F . Identification of a domain of axin that binds to the serine/threonine proten phosphatase 2 A and a self-binding domain. J Biol Chem 1999; 274: 3439–3445.

    Article  CAS  Google Scholar 

  25. Willert K, Shibamoto S, Nusse R . Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes Dev 1999; 13: 1768–1773.

    Article  CAS  Google Scholar 

  26. Ratcliffe MJ, Itoh K, Sokol SY . A positive role for the PP2 A catalytic subunit in Wnt signal transduction. J Biol Chem 2000; 275: 35680–35683.

    Article  CAS  Google Scholar 

  27. Yang J, Wu J, Tan C, Klein PS . PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 2003; 130: 5569–5578.

    Article  CAS  Google Scholar 

  28. Zhang W, Yang J, Liu Y, Yu T, Jia J, Liu C . PR55α, a regulatory subunit of PP2A, specifically regulates PP2A-mediated β-catenin dephosphorylation. J Biol Chem 2009; 284: 22649–22656.

    Article  CAS  Google Scholar 

  29. Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM . Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 1999; 283: 2089–2091.

    Article  CAS  Google Scholar 

  30. Li X, Yost HJ, Virshup DM, Seeling JM . Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J 2001; 20: 4122–4131.

    Article  CAS  Google Scholar 

  31. Cohen P, Klumpp S, Schelling DL . An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 1989; 250: 596–600.

    Article  CAS  Google Scholar 

  32. Fedi P, Bafico A, Nieto Soria A, Burgess WH, Miki T, Bottaro DP et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem 1999; 274: 19465–19472.

    Article  CAS  Google Scholar 

  33. Seshacharyulu P, Pandey P, Datta K, Batra SK . Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 2013; 335: 9–18.

    Article  CAS  Google Scholar 

  34. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al. Negative feedback loop of Wnt signaling through upregulation of Conductin/Axin2 in colorectal and liver tumors. Mol Cell Biol 2002; 22: 1184–1193.

    Article  CAS  Google Scholar 

  35. Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A . β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA 2011; 108: 19204–19209.

    Article  Google Scholar 

  36. Cruciat CM, Dolde C, de Groot RE a, Ohkawara B, Reinhard C, Korswagen HC et al. RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science 2013; 339: 1436–1441.

    Article  CAS  Google Scholar 

  37. Jin Z, Shi J, Saraf A, Mei W, Zhu G-Z, Strack S et al. The 48-kDa alternative translation isoform of PP2A:B56epsilon is required for Wnt signaling during midbrain-hindbrain boundary formation. J Biol Chem 2009; 284: 7190–7200.

    Article  CAS  Google Scholar 

  38. Tauriello DVF, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, Bouwman BaM et al. Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci USA 2012; 109: E812–E820.

    Article  CAS  Google Scholar 

  39. Gao C, Chen Y-G . Dishevelled: the hub of Wnt signaling. Cell Signal 2010; 22: 717–727.

    Article  CAS  Google Scholar 

  40. Kikuchi A, Yamamoto H, Sato A, Matsumoto S . Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 2012; 204: 17–33.

    Article  CAS  Google Scholar 

  41. Castaño J, Solanas G, Casagolda D, Raurell I, Villagrasa P, Bustelo XR et al. Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. Mol Cell Biol 2007; 27: 1745–1757.

    Article  Google Scholar 

  42. Piedra J, Miravet S, Castaño J, Pálmer HG, Heisterkamp N, García de Herreros A et al. p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol 2003; 23: 2287–2297.

    Article  CAS  Google Scholar 

  43. Valls G, Codina M, Miller RK, Del Valle-Pérez B, Vinyoles M, Caelles C et al. Upon Wnt stimulation, Rac1 activation requires Rac1 and Vav2 binding to p120-catenin. J Cell Sci 2012; 125: 5288–5301.

    Article  CAS  Google Scholar 

  44. Del Valle-Pérez B, Casagolda D, Lugilde E, Valls G, Codina M, Dave N et al. Wnt controls the transcriptional activity of Kaiso through CK1ɛ-dependent phosphorylation of p120-catenin. J Cell Sci 2011; 124: 2298–2309.

    Article  Google Scholar 

  45. Solanas G, Porta-de-la-Riva M, Agustí C, Casagolda D, Sánchez-Aguilera F, Larriba MJ et al. E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J Cell Sci 2008; 121: 2224–2234.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs González-Sancho, C Niehrs, A Bigas and A Kikuchi for providing reagents and N Ontiveros for excellent technical assistance. This work was funded by grants from the Ministerio de Economía y Competitividad (BFU2012-31554 and BFU2015-65153-R, both MINECO/FEDER, to MD and SAF2013-48849-C2-R1 to AGH) and Fundació La Marató de TV3 (120130) to MD and AGH. Support from ICREA Academia, 2014SGR-32 from Generalitat de Catalunya and ISCIII/FEDER (RD12/0036/005) is also appreciated. MV was a recipient of a predoctoral fellowship from FPI.

Author contributions

MD and AGdeH conceived the study. MV, BDV-P, JC, MP and AV performed the experiments. MV and BDV-P prepared the figures. MD and AGdeH designed the experiments and wrote the manuscript with inputs from MV and BDV-P and JY. All authors contributed to the interpretation and the discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A G de Herreros or M Duñach.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinyoles, M., Del Valle-Pérez, B., Curto, J. et al. Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling. Oncogene 36, 429–438 (2017). https://doi.org/10.1038/onc.2016.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.209

  • Springer Nature Limited

This article is cited by

Navigation