Skip to main content
Log in

PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Carvalho T, Seeler JS, Öhman K, Jordan P, Pettersson U, Akusjärvi G et al. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 1995; 131: 45–56.

    CAS  PubMed  Google Scholar 

  2. Maul GG . Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays 1998; 20: 660–667.

    CAS  PubMed  Google Scholar 

  3. Ishov AM, Maul GG . The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 1996; 134: 815–826.

    CAS  PubMed  Google Scholar 

  4. Ullman AJ, Hearing P . Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 2008; 82: 7325–7335.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ullman AJ, Reich NC, Hearing P . Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 2007; 81: 4744–4752.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P et al. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 2010; 84: 7029–7038.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartl B, Zeller T, Blanchette P, Kremmer E, Dobner T . Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription. Oncogene 2008; 27: 3673–3684.

    CAS  PubMed  Google Scholar 

  8. Wimmer P, Schreiner S, Everett RD, Sirma H, Groitl P, Dobner T . SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 2010; 29: 5511–5522.

    CAS  PubMed  Google Scholar 

  9. Pennella MA, Liu Y, Woo JL, Kim CA, Berk AJ . Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84: 12210–12225.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schreiner S, Wimmer P, Groitl P, Chen SY, Blanchette P, Branton PE et al. Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85: 8752–8765.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Everett RD . DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 2001; 20: 7266–7273.

    CAS  PubMed  Google Scholar 

  12. Everett RD, Chelbi-Alix MK . PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007; 89: 819–830.

    CAS  PubMed  Google Scholar 

  13. Tavalai N, Stamminger T . New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 2008; 1783: 2207–2221.

    CAS  PubMed  Google Scholar 

  14. Van Damme E, Van Ostade X . Crosstalk between viruses and PML nuclear bodies: a network-based approach. Front Biosci 2011; 17: 2910–2920.

    Google Scholar 

  15. Ascoli CA, Maul GG . Identification of a novel nuclear domain. J Cell Biol 1991; 112: 785–795.

    CAS  PubMed  Google Scholar 

  16. Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM . A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994; 76: 333–343.

    CAS  PubMed  Google Scholar 

  17. Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994; 13: 1073–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76: 345–356.

    CAS  PubMed  Google Scholar 

  19. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–684.

    CAS  PubMed  Google Scholar 

  20. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    CAS  PubMed  Google Scholar 

  21. Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D et al. Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J 1992; 11: 1397–1407.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kastner P, Perez A, Lutz Y, Rochette Egly C, Gaub MP, Durand B et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 1992; 11: 629–642.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Goddard AD, Borrow J, Solomon E . A previously uncharacterized gene, PML, is fused to the retinoic acid receptor alpha gene in acute promyelocytic leukaemia. Leukemia 1992; 6 (Suppl 3): 117S–119SS.

    PubMed  Google Scholar 

  24. Melnick A, Fruchtman S, Zelent A, Liu M, Huang Q, Boczkowska B et al. Identification of novel chromosomal rearrangements in acute myelogenous leukemia involving loci on chromosome 2p23, 15q22 and 17q21. Leukemia 1999; 13: 1534–1538.

    CAS  PubMed  Google Scholar 

  25. Melnick A, Licht JD . Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999; 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  26. Chang KS, Stass SA, Chu DT, Deaven LL, Trujillo JM, Freireich EJ . Characterization of a fusion cDNA (RARA/myl) transcribed from the t(15;17) translocation breakpoint in acute promyelocytic leukemia. Mol Cell Biol 1992; 12: 800–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004; 96: 269–279.

    CAS  PubMed  Google Scholar 

  28. Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11 S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 2001; 193: 1361–1371.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li H, Leo C, Zhu J, Wu X, O'Neil J, Park EJ et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 2000; 20: 1784–1796.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong S, Salomoni P, Pandolfi PP . The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000; 2: E85–E90.

    CAS  PubMed  Google Scholar 

  31. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406: 207–210.

    CAS  PubMed  Google Scholar 

  32. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW . PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000; 14: 2015–2027.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A . Deconstructing PML-induced premature senescence. Embo J 2002; 21: 3358–3369.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J 2002; 21: 2383–2396.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Salomoni P, Ferguson BJ, Wyllie AH, Rich T . New insights into the role of PML in tumour suppression. Cell Res 2008; 18: 622–640.

    CAS  PubMed  Google Scholar 

  36. Salomoni P, Pandolfi PP . The role of PML in tumor suppression. Cell 2002; 108: 165–170.

    CAS  PubMed  Google Scholar 

  37. Bischof O, Kim SH, Irving J, Beresten S, Ellis NA, Campisi J . Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol 2001; 153: 367–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carbone R, Pearson M, Minucci S, Pelicci PG . PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 2002; 21: 1633–1640.

    CAS  PubMed  Google Scholar 

  39. Takahashi Y, Lallemand-Breitenbach V, Zhu J, de The H . PML nuclear bodies and apoptosis. Oncogene 2004; 23: 2819–2824.

    CAS  PubMed  Google Scholar 

  40. Hofmann TG, Will H . Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 2003; 10: 1290–1299.

    CAS  PubMed  Google Scholar 

  41. Torok D, Ching RW, Bazett-Jones DP . PML nuclear bodies as sites of epigenetic regulation. Front Biosci 2009; 14: 1325–1336.

    CAS  Google Scholar 

  42. Jensen K, Shiels C, Freemont PS . PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20: 7223–7233.

    CAS  PubMed  Google Scholar 

  43. Fagioli M, Alcalay M, Pandolfi PP, Venturini L, Mencarelli A, Simeone A et al. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 1992; 7: 1083–1091.

    CAS  PubMed  Google Scholar 

  44. Stadler M, Chelbi-Alix MK, Koken MH, Venturini L, Lee C, Saib A et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 1995; 11: 2565–2573.

    CAS  PubMed  Google Scholar 

  45. de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G et al. PML is a direct p53 target that modulates p53 effector functions. Mol Cell 2004; 13: 523–535.

    CAS  PubMed  Google Scholar 

  46. Kentsis A, Gordon RE, Borden KL . Self-assembly properties of a model RING domain. Proc Natl Acad Sci USA 2002; 99: 667–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK . Differential Roles of PML Isoforms. Front Oncol 2013; 3: 125.

    PubMed  PubMed Central  Google Scholar 

  48. Muller S, Matunis MJ, Dejean A . Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. Embo J 1998; 17: 61–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Everett RD, Lomonte P, Sternsdorf T, van Driel R, Orr A . Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 1999; 112 (Pt 24): 4581–4588.

    CAS  PubMed  Google Scholar 

  50. Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP . Role of SUMO-1-modified PML in nuclear body formation. Blood 2000; 95: 2748–2752.

    CAS  PubMed  Google Scholar 

  51. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 2006; 126: 269–283.

    CAS  PubMed  Google Scholar 

  52. Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A et al. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 2006; 66: 6192–6198.

    CAS  PubMed  Google Scholar 

  53. Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN et al. SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 1999; 112 (Pt 3): 381–393.

    CAS  PubMed  Google Scholar 

  54. Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM . A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 2005; 337: 517–520.

    CAS  PubMed  Google Scholar 

  55. Wimmer P, Schreiner S, Dobner T . Human pathogens and the host cell SUMOylation system. J Virol 2012; 86: 642–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Haley KP, Overhauser J, Babiss LE, Ginsberg HS, Jones NC . Transformation properties of type 5 adenovirus mutants that differentially express the E1 A gene products. Proc Natl Acad Sci USA 1984; 81: 5734–5738.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B . Lytic and transforming functions of individual products of the adenovirus E1A gene. J Virol 1986; 57: 765–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lowe SW, Ruley HE . Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 1993; 7: 535–545.

    CAS  PubMed  Google Scholar 

  59. White E . Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 2001; 20: 7836–7846.

    CAS  PubMed  Google Scholar 

  60. McLorie W, McGlade CJ, Takayesu D, Branton PE . Individual adenovirus E1B proteins induce transformation independently but by additive pathways. J Gen Virol 1991; 72: 1467–1471.

    CAS  PubMed  Google Scholar 

  61. Ruley HE . Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 1983; 304: 602–606.

    CAS  PubMed  Google Scholar 

  62. Lowe SW, Jacks T, Housman DE, Ruley HE . Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 1994; 91: 2026–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. White E . Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc Soc Exp Biol Med 1993; 204: 30–39.

    CAS  PubMed  Google Scholar 

  64. Kao CC, Yew PR, Berk AJ . Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 1990; 179: 806–814.

    CAS  PubMed  Google Scholar 

  65. Sarnow P, Ho YS, Williams J, Levine AJ . Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 1982; 28: 387–394.

    CAS  PubMed  Google Scholar 

  66. Yew PR, Liu X, Berk AJ . Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 1994; 8: 190–202.

    CAS  PubMed  Google Scholar 

  67. Martin ME, Berk AJ . Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol Cell Biol 1999; 19: 3403–3414.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zantema A, Fransen JA, Davis OA, Ramaekers FC, Vooijs GP, DeLeys B et al. Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 1985; 142: 44–58.

    CAS  PubMed  Google Scholar 

  69. Sieber T, Dobner T . Adenovirus type 5 early region 1B 156 R protein promotes cell transformation independently of repression of p53-stimulated transcription. J Virol 2007; 81: 95–105.

    CAS  PubMed  Google Scholar 

  70. Endter C, Hartl B, Spruss T, Hauber J, Dobner T . Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 2005; 24: 55–64.

    CAS  PubMed  Google Scholar 

  71. Endter C, Kzhyshkowska J, Stauber R, Dobner T . SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci USA 2001; 98: 11312–11317.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zantema A, Schrier PI, Davis OA, van Laar T, Vaessen RT, van der Eb AJ . Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol Cell Biol 1985; 5: 3084–3091.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Goodrum FD, Shenk T, Ornelles DA . Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 1996; 70: 6323–6335.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. König C, Roth J, Dobbelstein M . Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J Virol 1999; 73: 2253–2262.

    PubMed  PubMed Central  Google Scholar 

  75. Krätzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J et al. The adenovirus type 5 E1B-55k oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 2000; 19: 850–857.

    PubMed  Google Scholar 

  76. Wienzek S, Roth J, Dobbelstein M . E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J Virol 2000; 74: 193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dosch T, Horn F, Schneider G, Krätzer F, Dobner T, Hauber J et al. The adenovirus type 5 E1B-55K oncoprotein actively shuttles in virus-infected cells, whereas transport of E4orf6 is mediated by a CRM1 independent-mechanism. J Virol 2001; 75: 5677–5683.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Muller S, Dobner T . The adenovirus E1B-55K oncoprotein induces SUMO modification of p53. Cell Cycle 2008; 7: 754–758.

    CAS  PubMed  Google Scholar 

  79. Martin ME, Berk AJ . Adenovirus E1B 55K represses p53 activation in vitro. J Virol 1998; 72: 3146–3154.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kindsmuller K, Schreiner S, Leinenkugel F, Groitl P, Kremmer E, Dobner T . A 49-kilodalton isoform of the adenovirus type 5 early region 1B 55-kilodalton protein is sufficient to support virus replication. J Virol 2009; 83: 9045–9056.

    PubMed  PubMed Central  Google Scholar 

  81. Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J et al. Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 2013; 32: 1626–1637.

    CAS  PubMed  Google Scholar 

  82. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279: 1547–1551.

    CAS  PubMed  Google Scholar 

  83. Branton PE, Bayley ST, Graham FL . Transformation by human adenoviruses. Biochim Biophys Acta 1985; 780: 67–94.

    CAS  PubMed  Google Scholar 

  84. Graham FL . Transformation by and oncogenicity of human adenoviruses. In: Ginsberg HS (ed). The Adenoviruses. Plenum Press: New York, pp 339–398 1984.

    Google Scholar 

  85. Ricciardi RP . Transformation and tumorigenesis mediated by the adenovirus E1A and E1B oncogenes. In: Barbanti-Brodano G (ed). DNA Tumor Viruses: Oncogenic Mechanisms. Plenum Press: New York, pp 195–210 1995.

    Google Scholar 

  86. Nevins JR, Vogt PK . Cell transformation by viruses. In: Fields BN, Knipe DM, Howley PM (eds). Virology Fields Virology 1, Third edn. Lippincott-Raven: New York, pp, 301–343 1996.

    Google Scholar 

  87. Gallimore PH, Turnell AS . Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 2001; 20: 7824–7835.

    CAS  PubMed  Google Scholar 

  88. Trentin JJ, Yabe Y, Taylor G . The quest for human cancer viruses: a new approach to an old problem reveals cancer induction in hamster hy human adenoviruses. Science 1962; 137: 835–849.

    CAS  PubMed  Google Scholar 

  89. Graham FL, Smiley J, Russel WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–72.

    CAS  PubMed  Google Scholar 

  90. Whittaker JL, Byrd PJ, Grand RJ, Gallimore PH . Isolation and characterization of four adenovirus type 12-transformed human embryo kidney cell lines. Mol Cell Biol 1984; 4: 110–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. van den Heuvel SJL, The SI, Klein B, Jochemsen AG, Zantema A, van der Eb AJ . p53 shares an antigenic determinant with proteins of 92 and 150 kilodaltons that may be involved in senescence of human cells. J Virol 1992; 66: 591–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998; 9: 1909–1917.

    CAS  PubMed  Google Scholar 

  93. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996; 7: 215–222.

    CAS  PubMed  Google Scholar 

  94. Gallimore PH, Grand RJ, Byrd PJ . Transformation of human embryo retinoblasts with simian virus 40, adenovirus and ras oncogenes. Anticancer Res 1986; 6 (3 Pt B): 499–508.

    CAS  PubMed  Google Scholar 

  95. Schiedner G, Hertel S, Kochanek S . Efficient transformation of primary human amniocytes by E1 functions of ad5: generation of new cell lines for adenoviral vector production. Hum Gene Ther 2000; 11: 2105–2116.

    CAS  PubMed  Google Scholar 

  96. Byrd P, Brown KW, Gallimore PH . Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. Nature 1982; 298: 69–71.

    CAS  PubMed  Google Scholar 

  97. Endter C, Dobner T . Cell transformation by human adenoviruses. Curr Top Microbiol Immunol 2004; 273: 163–214.

    CAS  PubMed  Google Scholar 

  98. Graham FL, Rowe DT, McKinnon R, Bacchetti S, Ruben M, Branton PE . Transformation by human adenoviruses. J Cell Physiol Suppl 1984; 3: 151–163.

    CAS  PubMed  Google Scholar 

  99. Goddard AD, Yuan JQ, Fairbairn L, Dexter M, Borrow J, Kozak C et al. Cloning of the murine homolog of the leukemia-associated PML gene. Mamm Genome 1995; 6: 732–737.

    CAS  PubMed  Google Scholar 

  100. Van Damme E, Laukens K, Dang TH, Van Ostade X . A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 2010; 6: 51–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Brand P, Lenser T, Hemmerich P . Assembly dynamics of PML nuclear bodies in living cells. PMC Biophys 2010; 3: 3.

    PubMed  PubMed Central  Google Scholar 

  102. Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG, Schwanitz G et al. Dynamics of component exchange at PML nuclear bodies. J Cell Sci 2008; 121: 2731–2743.

    CAS  PubMed  Google Scholar 

  103. Geng Y, Monajembashi S, Shao A, Cui D, He W, Chen Z et al. Contribution of the C-terminal regions of promyelocytic leukemia protein (PML) isoforms II and V to PML nuclear body formation. J Biol Chem 2012; 287: 30729–30742.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gurrieri C, Nafa K, Merghoub T, Bernardi R, Capodieci P, Biondi A et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 2004; 103: 2358–2362.

    CAS  PubMed  Google Scholar 

  105. Koken MH, Linares-Cruz G, Quignon F, Viron A, Chelbi-Alix MK, Sobczak-Thèpot J et al. The PML growth-suppressor has an altered expression in human oncognesis. Oncogene 1995; 10: 1315–1324.

    CAS  PubMed  Google Scholar 

  106. Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S . The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 2013; 87: 965–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Debbas M, White E . Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 1993; 7: 546–554.

    CAS  PubMed  Google Scholar 

  108. Grand RJ, Grant ML, Gallimore PH . Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 1994; 203: 229–240.

    CAS  PubMed  Google Scholar 

  109. Sabbatini P, Lin J, Levine AJ, White E . Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev 1995; 9: 2184–2192.

    CAS  PubMed  Google Scholar 

  110. Samuelson AV, Lowe SW . Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc Natl Acad Sci USA 1997; 94: 12094–12099.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk JS et al. Regulation of the 26S proteasome by adenovirus E1A. Embo J 2000; 19: 4759–4773.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Querido E, Teodoro JG, Branton PE . Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis. J Virol 1997; 71: 3526–3533.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kindsmüller K, Groitl P, Härtl B, Blanchette P, Hauber J, Dobner T . Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc Natl Acad Sci USA 2007; 104: 6684–6689.

    PubMed  PubMed Central  Google Scholar 

  114. Lethbridge KJ, Scott GE, Leppard KN . Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 2003; 84: 259–268.

    CAS  PubMed  Google Scholar 

  115. Müller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A . c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 2000; 275: 13321–13329.

    PubMed  Google Scholar 

  116. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 1999; 18: 6462–6471.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kahyo T, Nishida T, Yasuda H . Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 2001; 8: 713–718.

    CAS  PubMed  Google Scholar 

  118. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18: 6455–6461.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Schmidt D, Müller S . Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 2002; 99: 2872–2877.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bernardi R, Pandolfi PP . Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 2003; 22: 9048–9057.

    CAS  PubMed  Google Scholar 

  121. Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000; 19: 6185–6195.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000; 2: 730–736.

    CAS  PubMed  Google Scholar 

  123. Gostissa M, Hofmann TG, Will H, del Sal G . Regulation of p53 functions: let's meet at the nuclear bodies. Curr Opin Cell Biol 2003; 15: 351–357.

    CAS  PubMed  Google Scholar 

  124. Pearson MPP . PML interactions with p53 and its role in apoptosis and replicative senescence. Oncogene 2001; 20: 7250–7256.

    CAS  PubMed  Google Scholar 

  125. Dobner T, Kzhyshkowska J . Nuclear export of adenovirus RNA. Curr Top Microbiol Immunol 2001; 259: 25–54.

    CAS  PubMed  Google Scholar 

  126. Querido E, Morisson MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE . Identification of three functions of the adenovirus E4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J Virol 2001; 75: 699–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Stracker TH, Carson CT, Weitzman MD . Adenovirus oncoproteins inactivate the Mre11 Rad50 NBS1 DNA repair complex. Nature 2002; 418: 348–352.

    CAS  PubMed  Google Scholar 

  128. Baker A, Rohleder KJ, Hanakahi LA, Ketner G . Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 2007; 81: 7034–7040.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dallaire F, Blanchette P, Groitl P, Dobner T, Branton PE . Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 2009; 83: 5329–5338.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T et al. Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 2004; 24: 9619–9629.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 2001; 15: 3104–3117.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Querido E, Marcellus RC, Lai A, Charbonneau R, Teodoro JG, Ketner G et al. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 1997; 71: 3788–3798.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ . Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 1984; 49: 692–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D'Amico D, Bodner HK et al. p53 gene mutations in non-small-lung cell cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 1992; 7: 171–180.

    CAS  PubMed  Google Scholar 

  135. Nevels M, Dobner T . Determination of the transforming activities of adenovirus oncogenes. In: Wold WS, Tollefson AE (eds). Adenovirus Methods and Protocols Methods in Molecular Medicine 2 2nd edn. Humana Press Inc.: Totowa, NJ, pp 187–195 2006.

    Google Scholar 

  136. Dobner T, Horikoshi N, Rubenwolf S, Shenk T . Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 1996; 272: 1470–1473.

    CAS  PubMed  Google Scholar 

  137. Okamoto K, Beach D . Cyclin G is a transcriptional target of the p53 tumor suppressor protein. Embo J 1994; 13: 4816–4822.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Logan J, Pilder S, Shenk T . Functional analysis of adenovirus type 5 early region 1B. Cancer Cells 1984; 2: 527–532.

    CAS  Google Scholar 

  139. Sarnow P, Sullivan CA, Levine AJ . A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology 1982; 120: 510–517.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Roger D Everett for providing reagents, and greatly appreciate the critical comments and very helpful advise from Thomas Sternsdorf. We thank Ellis Jaffray, Gabriele Dobner and Thomas Speiseder for technical support and Hannah Staege for animal work. The Heinrich Pette Institute, Leibniz Institute for Experimental Virology is supported by the Freie und Hansestadt Hamburg and the Bundesministerium für Gesundheit (BMG). SS was supported by the Peter und Traudl Engelhorn Stiftung and additional grants from the Erich und Gertrud Roggenbuck Stiftung, the Else Kröner-Fresenius-Stiftung and the Deutsche Krebshilfe e. V. TD is supported by the Deutsche Forschungsgemeinschaft (DFG) and the Wilhelm Sander-Stiftung. Part of this work was supported by the B Braun Stiftung, the Dräger Stiftung and the Fonds der Chemischen Industrie. PB and PEB were supported by grants from the Canadian Institutes of Health Research. Image collection for the manuscript was performed in the McGill University Life Sciences Complex Imaging Facility. Purchase of equipment in the facility was made possible with funding from the Canadian Foundation for Innovation (CFI) and the Ministère du Développement économique, innovation et exportation Québec (MDEIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Schreiner.

Ethics declarations

Competing interests

PW is currently an employee of Novartis. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimmer, P., Berscheminski, J., Blanchette, P. et al. PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 35, 69–82 (2016). https://doi.org/10.1038/onc.2015.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.63

  • Springer Nature Limited

This article is cited by

Navigation