Skip to main content

Advertisement

Log in

Critical role of mitochondria-mediated apoptosis for JNJ-26481585-induced antitumor activity in rhabdomyosarcoma

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

JNJ-26481585 is a second-generation histone deacetylase inhibitor with broad-range efficacy and improved pharmacodynamic properties. In the present study, we investigated the therapeutic potential of JNJ-26481585 and its molecular mechanisms of action in rhabdomyosarcoma (RMS). Here, we report that JNJ- 26481585’s anticancer activity critically depends on an intact mitochondrial pathway of apoptosis. JNJ-26481585 induces apoptosis and also inhibits long-term clonogenic survival of several RMS cell lines at nanomolar concentrations that cause histone acetylation. Importantly, JNJ-26481585 significantly suppresses tumor growth in vivo in two preclinical RMS models, that is, the chorioallantoic membrane model and a xenograft mouse model. Mechanistically, we identify activation of the mitochondrial pathway of apoptosis as a key event that is critically required for JNJ-26481585-mediated cell death. JNJ-26481585 upregulates expression levels of several BH3-only proteins including Bim, Puma and Noxa, which all contribute to JNJ-26481585-mediated apoptosis, as knockdown of Bim, Puma or Noxa significantly inhibits cell death. This shift toward proapoptotic Bcl-2 proteins promotes activation of Bax and Bak as a critical event, as genetic silencing of Bax or Bak protects against JNJ-26481585-induced apoptosis. Intriguingly, rescue experiments reveal that JNJ-26481585 triggers Bax/Bak activation independently of caspase activation and activates caspase-9 as the initiator caspase in the cascade, as Bcl-2 overexpression, but not the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) blocks JNJ-26481585-induced Bax/Bak activation and caspase-9 cleavage. In conclusion, JNJ-26481585 exerts potent antitumor activity against RMS in vitro and in vivo by engaging mitochondrial apoptosis before caspase activation and represents a promising therapeutic for further investigation in RMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miller RW, Young JL Jr, Novakovic B . Childhood cancer. Cancer 1995; 75: 395–405.

    Article  CAS  PubMed  Google Scholar 

  2. Dagher R, Helman L . Rhabdomyosarcoma: an overview. Oncologist 1999; 4: 34–44.

    CAS  PubMed  Google Scholar 

  3. Hayes-Jordan A, Andrassy R . Rhabdomyosarcoma in children. Curr Opin Pediatr 2009; 21: 373–378.

    Article  PubMed  Google Scholar 

  4. Dantonello TM, Int-Veen C, Harms D, Leuschner I, Schmidt BF, Herbst M et al. Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. J Clin Oncol 2009; 27: 1446–1455.

    Article  CAS  PubMed  Google Scholar 

  5. Fulda S, Debatin KM . Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RC, Cullen SP, Martin SJ . Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; 9: 231–241.

    Article  CAS  PubMed  Google Scholar 

  7. Fulda S, Galluzzi L, Kroemer G . Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 2010; 9: 447–464.

    Article  CAS  PubMed  Google Scholar 

  8. Adams JM, Cory S . The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ellis L, Atadja PW, Johnstone RW . Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8: 1409–1420.

    Article  CAS  PubMed  Google Scholar 

  10. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  11. Matthews GM, Newbold A, Johnstone RW . Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 2012; 116: 165–197.

    Article  CAS  PubMed  Google Scholar 

  12. Arts J, King P, Marien A, Floren W, Belien A, Janssen L et al. JNJ-26481585, a novel "second-generation" oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res 2009; 15: 6841–6851.

    Article  CAS  PubMed  Google Scholar 

  13. Deleu S, Lemaire M, Arts J, Menu E, Van Valckenborgh E, King P et al. The effects of JNJ-26481585, a novel hydroxamate-based histone deacetylase inhibitor, on the development of multiple myeloma in the 5T2MM and 5T33MM murine models. Leukemia 2009; 23: 1894–1903.

    Article  CAS  PubMed  Google Scholar 

  14. Venugopal B, Baird R, Kristeleit RS, Plummer R, Cowan R, Stewart A et al. A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clin Cancer Res 2013; 19: 4262–4272.

    Article  CAS  PubMed  Google Scholar 

  15. Carol H, Gorlick R, Kolb EA, Morton CL, Manesh DM, Keir ST et al. Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2014; 61: 245–252.

    Article  PubMed  Google Scholar 

  16. Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell 2013; 24: 710–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN . Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 2004; 59: 177–189.

    Article  CAS  PubMed  Google Scholar 

  18. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M et al. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res 2009; 69: 2425–2434.

    Article  CAS  PubMed  Google Scholar 

  19. Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ et al. Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 2006; 439: 95–99.

    Article  CAS  PubMed  Google Scholar 

  20. Graab U, Hahn H, Fulda S . Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget 2015; 6: 8722–8735.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol Cell 2013; 51: 751–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felix CA, Kappel CC, Mitsudomi T, Nau MM, Tsokos M, Crouch GD et al. Frequency and diversity of p53 mutations in childhood rhabdomyosarcoma. Cancer Res 1992; 52: 2243–2247.

    CAS  PubMed  Google Scholar 

  23. Taylor AC, Shu L, Danks MK, Poquette CA, Shetty S, Thayer MJ et al. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol 2000; 35: 96–103.

    Article  CAS  PubMed  Google Scholar 

  24. Happo L, Strasser A, Cory S . BH3-only proteins in apoptosis at a glance. J Cell Sci 2012; 125: 1081–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han Z, Hendrickson EA, Bremner TA, Wyche JH . A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 1997; 272: 13432–13436.

    Article  CAS  PubMed  Google Scholar 

  26. Stuhmer T, Arts J, Chatterjee M, Borawski J, Wolff A, King P et al. Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. Br J Haematol 2010; 149: 529–536.

    Article  PubMed  Google Scholar 

  27. Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM . Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia 2007; 21: 1773–1782.

    Article  CAS  PubMed  Google Scholar 

  28. Wiegmans AP, Alsop AE, Bots M, Cluse LA, Williams SP, Banks KM et al. Deciphering the molecular events necessary for synergistic tumor cell apoptosis mediated by the histone deacetylase inhibitor vorinostat and the BH3 mimetic ABT-737. Cancer Res 2011; 71: 3603–3615.

    Article  CAS  PubMed  Google Scholar 

  29. Xargay-Torrent S, Lopez-Guerra M, Saborit-Villarroya I, Rosich L, Campo E, Roue G et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res 2011; 17: 3956–3968.

    Article  CAS  PubMed  Google Scholar 

  30. Labi V, Erlacher M, Kiessling S, Manzl C, Frenzel A, O'Reilly L et al. Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates gamma irradiation-induced thymic lymphoma development. J Exp Med 2008; 205: 641–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Witt O, Milde T, Deubzer HE, Oehme I, Witt R, Kulozik A et al. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma or leukemia. Klin Padiatr 2012; 224: 398–403.

    Article  CAS  PubMed  Google Scholar 

  32. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM . The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 1997; 57: 3823–3829.

    CAS  PubMed  Google Scholar 

  33. Heinicke U, Fulda S . Chemosensitization of rhabdomyosarcoma cells by the histone deacetylase inhibitor SAHA. Cancer Lett 2014; 351: 50–58.

    Article  CAS  PubMed  Google Scholar 

  34. Hacker S, Dittrich A, Mohr A, Schweitzer T, Rutkowski S, Krauss J et al. Histone deacetylase inhibitors cooperate with IFN-gamma to restore caspase-8 expression and overcome TRAIL resistance in cancers with silencing of caspase-8. Oncogene 2009; 28: 3097–3110.

    Article  CAS  PubMed  Google Scholar 

  35. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010; 102: 1555–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Hugenberg for expert secretarial assistance. This work has been partially supported by grants from the BMBF and the Deutsche Kinderkrebsstiftung (to SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fulda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinicke, U., Kupka, J., Fichter, I. et al. Critical role of mitochondria-mediated apoptosis for JNJ-26481585-induced antitumor activity in rhabdomyosarcoma. Oncogene 35, 3729–3741 (2016). https://doi.org/10.1038/onc.2015.440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.440

  • Springer Nature Limited

This article is cited by

Navigation