Skip to main content

Advertisement

Log in

CDK6—a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation

  • Review
  • Published:
Oncogene Submit manuscript

Abstract

The G1 cell-cycle kinase CDK6 has long been thought of as a redundant homolog of CDK4. Although the two kinases have very similar roles in cell-cycle progression, it has recently become apparent that they differ in tissue-specific functions and contribute differently to tumor development. CDK6 is directly involved in transcription in tumor cells and in hematopoietic stem cells. These functions point to a role of CDK6 in tissue homeostasis and differentiation that is partially independent of CDK6’s kinase activity and is not shared with CDK4. We review the literature on the contribution of CDK6 to transcription in an attempt to link the new findings on CDK6’s transcriptional activity to cell-cycle progression. Finally, we note that anticancer therapies based on the inhibition of CDK6 kinase activity fail to take into account its kinase-independent role in tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11: 1275–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim S, Kaldis P . Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140: 3079–3093.

    CAS  PubMed  Google Scholar 

  3. Malumbres M, Barbacid M . To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1: 222–231.

    CAS  PubMed  Google Scholar 

  4. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    CAS  PubMed  Google Scholar 

  5. Brower V . Cell cycle inhibitors make progress. J Natl Cancer Inst 2014; 106: 2–3.

    Google Scholar 

  6. Choi YJ, Anders L . Signaling through cyclin D-dependent kinases. Oncogene 2014; 33: 1890–1903.

    CAS  PubMed  Google Scholar 

  7. Aleem E, Arceci RJ . Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 2015; 3: 16.

    PubMed  PubMed Central  Google Scholar 

  8. Malínková V, Vylíčil J, Kryštof V . Cyclin-dependent kinase inhibitors for cancer therapy: a patent review (2009-2014). Expert Opin Ther Pat 2015; 1–18.

  9. Sánchez-Martínez C, Gelbert LM, Lallena MJ, de Dios A . Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 2015; 25: 3420–3435.

    PubMed  Google Scholar 

  10. Meyerson M, Harlow E . Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol 1994; 14: 2077–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C et al. CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 1994; 9: 71–79.

    CAS  PubMed  Google Scholar 

  12. Lucas JJ, Szepesi A, Modiano JF, Domenico J, Gelfand EW . Regulation of synthesis and activity of the PLSTIRE protein (cyclin-dependent kinase 6 (cdk6)), a major cyclin D-associated cdk4 homologue in normal human T lymphocytes. J Immunol 1995; 154: 6275–6284.

    CAS  PubMed  Google Scholar 

  13. Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 1992; 71: 323–334.

    CAS  PubMed  Google Scholar 

  14. Malumbres M, Sotillo R, Santamaría D, Galán J, Cerezo A, Ortega S et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004; 118: 493–504.

    CAS  PubMed  Google Scholar 

  15. Rane SG, Dubus P, Mettus R V, Galbreath EJ, Boden G, Reddy EP et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 1999; 22: 44–52.

    CAS  PubMed  Google Scholar 

  16. Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 1999; 19: 7011–7019.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu MG, Deshpande A, Enos M, Mao D, Hinds EA, Hu G et al. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res 2009; 69: 810–818.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C et al. A family of human cdc2-related protein kinases. EMBO J 1992; 11: 2909–2917.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ekholm S V, Reed SI . Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 2000; 12: 676–684.

    CAS  PubMed  Google Scholar 

  20. Sherr CJ, Roberts JM . Living with or without cyclins and cyclin-dependent kinases. Genes Dev 2004; 18: 2699–2711.

    CAS  PubMed  Google Scholar 

  21. Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, Kato JY . D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 1994; 14: 2066–2076.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kollmann K, Sexl V . CDK6 and p16INK4A in lymphoid malignancies. Oncotarget 2013; 4: 1858–1859.

    PubMed  PubMed Central  Google Scholar 

  23. Morgan DO . Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13: 261–291.

    Article  CAS  PubMed  Google Scholar 

  24. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  25. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ . Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993; 7: 331–342.

    CAS  PubMed  Google Scholar 

  26. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC . Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999; 98: 859–869.

    CAS  PubMed  Google Scholar 

  27. Lundberg AS, Weinberg RA . Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18: 753–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo RX, Postigo AA, Dean DC . Rb interacts with histone deacetylase to repress transcription. Cell 1998; 92: 463–473.

    CAS  PubMed  Google Scholar 

  29. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391: 597–601.

    CAS  PubMed  Google Scholar 

  30. Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D . Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 2001; 21: 6484–6494.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O’Carroll D et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001; 412: 561–565.

    CAS  PubMed  Google Scholar 

  32. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 2000; 101: 79–89.

    CAS  PubMed  Google Scholar 

  33. Talluri S, Dick FA . Regulation of transcription and chromatin structure by pRB: here, there and everywhere. Cell Cycle 2012; 11: 3189–3198.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gordon GM, Du W . Conserved RB functions in development and tumor suppression. Protein Cell 2011; 2: 864–878.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubin SM, Gall A-L, Zheng N, Pavletich NP . Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 2005; 123: 1093–1106.

    CAS  PubMed  Google Scholar 

  36. Burke JR, Deshong AJ, Pelton JG, Rubin SM . Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J Biol Chem 2010; 285: 16286–16293.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Burke JR, Liban TJ, Restrepo T, Lee H-W, Rubin SM . Multiple mechanisms for E2F binding inhibition by phosphorylation of the retinoblastoma protein C-terminal domain. J Mol Biol 2014; 426: 245–255.

    CAS  PubMed  Google Scholar 

  38. Lapenna S, Giordano A . Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 2009; 8: 547–566.

    CAS  PubMed  Google Scholar 

  39. Dyson N . The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    CAS  PubMed  Google Scholar 

  40. Wierstra I, Alves J . FOXM1, a typical proliferation-associated transcription factor. Biol Chem 2007; 388: 1257–1274.

    CAS  PubMed  Google Scholar 

  41. Wierstra I . The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118: 97–398.

    CAS  PubMed  Google Scholar 

  42. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011; 20: 620–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang L, Fried FB, Guo H, Friedman AD . Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood 2008; 111: 1193–1200.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lazaro J-B, Bailey PJ, Lassar AB . Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev 2002; 16: 1792–1805.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen R, Wang X, Drissi H, Liu F, O’Keefe RJ, Chen D . Cyclin D1-cdk4 induce runx2 ubiquitination and degradation. J Biol Chem 2006; 281: 16347–16353.

    CAS  PubMed  Google Scholar 

  46. Kohrt D, Crary J, Zimmer M, Patrick AN, Ford HL, Hinds PW et al. CDK6 binds and promotes the degradation of the EYA2 protein. Cell Cycle 2014; 13: 62–71.

    CAS  PubMed  Google Scholar 

  47. Nakajima K, Inagawa M, Uchida C, Okada K, Tane S, Kojima M et al. Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway. Development 2011; 138: 1771–1782.

    CAS  PubMed  Google Scholar 

  48. Ruiz A, Pauls E, Badia R, Torres-Torronteras J, Riveira-Muñoz E, Clotet B et al. Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages. Cell Cycle 2015; 14: 1657–1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Muñoz E et al. Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 2014; 193: 1988–1997.

    CAS  PubMed  Google Scholar 

  50. Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 2014; 510: 547–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Vanden Bush TJ, Bishop GA . CDK-mediated regulation of cell functions via c-Jun phosphorylation and AP-1 activation. PLoS One 2011; 6: e19468.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F . Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004; 430: 226–231.

    CAS  PubMed  Google Scholar 

  53. Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell 2010; 18: 329–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov 2015; 5: 288–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997; 11: 847–862.

    CAS  PubMed  Google Scholar 

  56. Blain SW, Montalvo E, Massagué J . Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 1997; 272: 25863–25872.

    CAS  PubMed  Google Scholar 

  57. Cheng M, Sexl V, Sherr CJ, Roussel MF . Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 1998; 95: 1091–1096.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. The p21(Cip1) and p27(Kip1) CDK “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dong F, Agrawal D, Bagui T, Pledger WJ . Cyclin D3-associated kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. Mol Biol Cell 1998; 9: 2081–2092.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sugimoto M, Martin N, Wilks DP, Tamai K, Huot TJG, Pantoja C et al. Activation of cyclin D1-kinase in murine fibroblasts lacking both p21(Cip1) and p27(Kip1). Oncogene 2002; 21: 8067–8074.

    CAS  PubMed  Google Scholar 

  61. Cerqueira A, Martín A, Symonds CE, Odajima J, Dubus P, Barbacid M et al. Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors. Mol Cell Biol 2014; 34: 1452–1459.

    PubMed  PubMed Central  Google Scholar 

  62. Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995; 6: 387–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9–22.

    CAS  PubMed  Google Scholar 

  64. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994; 78: 59–66.

    CAS  PubMed  Google Scholar 

  65. Lee MH, Reynisdóttir I, Massagué J . Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 1995; 9: 639–649.

    CAS  PubMed  Google Scholar 

  66. Russo AA, Jeffrey PD, Patten AK, Massagué J, Pavletich NP . Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 1996; 382: 325–331.

    CAS  PubMed  Google Scholar 

  67. Toyoshima H, Hunter T . p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994; 78: 67–74.

    CAS  PubMed  Google Scholar 

  68. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    CAS  PubMed  Google Scholar 

  69. Ruas M, Peters G . The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378: F115–F177.

    CAS  PubMed  Google Scholar 

  70. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–707.

    CAS  PubMed  Google Scholar 

  71. Parry D, Mahony D, Wills K, Lees E . Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol Cell Biol 1999; 19: 1775–1783.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiong Y, Zhang H, Beach D . Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 1993; 7: 1572–1583.

    CAS  PubMed  Google Scholar 

  73. Jeffrey PD, Tong L, Pavletich NP . Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev 2000; 14: 3115–3125.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269: 1281–1284.

    PubMed  Google Scholar 

  75. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12: 97–99.

    CAS  PubMed  Google Scholar 

  76. Schmidt EE, Ichimura K, Reifenberger G, Collins VP . CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 1994; 54: 6321–6324.

    CAS  PubMed  Google Scholar 

  77. Malumbres M, Barbacid M . Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30: 630–641.

    CAS  PubMed  Google Scholar 

  78. Yu Q, Sicinska E, Geng Y, Ahnström M, Zagozdzon A, Kong Y et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 2006; 9: 23–32.

    CAS  PubMed  Google Scholar 

  79. Reddy HKDL, Mettus RV, Rane SG, Graña X, Litvin J, Reddy EP . Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res 2005; 65: 10174–10178.

    CAS  PubMed  Google Scholar 

  80. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW . Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 2006; 9: 13–22.

    CAS  PubMed  Google Scholar 

  81. Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18: 63–73.

    CAS  PubMed  Google Scholar 

  82. Hussain MS, Baig SM, Neumann S, Peche VS, Szczepanski S, Nürnberg G et al. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly. Hum Mol Genet 2013; 22: 5199–5214.

    CAS  PubMed  Google Scholar 

  83. Chilosi M, Doglioni C, Yan Z, Lestani M, Menestrina F, Sorio C et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol 1998; 152: 209–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lien HC, Lin CW, Huang PH, Chang ML, Hsu SM . Expression of cyclin-dependent kinase 6 (cdk6) and frequent loss of CD44 in nasal-nasopharyngeal NK/T-cell lymphomas: comparison with CD56-negative peripheral T-cell lymphomas. Lab Invest 2000; 80: 893–900.

    CAS  PubMed  Google Scholar 

  85. Schwartz R, Engel I, Fallahi-Sichani M, Petrie HT, Murre C . Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci USA 2006; 103: 9976–9981.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nagel S, Leich E, Quentmeier H, Meyer C, Kaufmann M, Drexler HG et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia 2008; 22: 387–392.

    CAS  PubMed  Google Scholar 

  87. Brito-Babapulle V, Gruszka-Westwood AM, Platt G, Andersen CL, Elnenaei MO, Matutes E et al. Translocation t(2;7)(p12;q21-22) with dysregulation of the CDK6 gene mapping to 7q21-22 in a non-Hodgkin’s lymphoma with leukemia. Haematologica 2002; 87: 357–362.

    CAS  PubMed  Google Scholar 

  88. Hayette S, Tigaud I, Callet-Bauchu E, Ffrench M, Gazzo S, Wahbi K et al. In B-cell chronic lymphocytic leukemias, 7q21 translocations lead to overexpression of the CDK6 gene. Blood 2003; 102: 1549–1550.

    CAS  PubMed  Google Scholar 

  89. Chen D, Law ME, Theis JD, Gamez JD, Caron LB, Vrana JA et al. Clinicopathologic features of CDK6 translocation-associated B-cell lymphoproliferative disorders. Am J Surg Pathol 2009; 33: 720–729.

    PubMed  PubMed Central  Google Scholar 

  90. Wiedemeyer WR, Dunn IF, Quayle SN, Zhang J, Chheda MG, Dunn GP et al. Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci USA 2010; 107: 11501–11506.

    PubMed  PubMed Central  Google Scholar 

  91. Waddell N, Pajic M, Patch A-M, Chang DK, Kassahn KS, Bailey P et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518: 495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Van der Linden MH, Willekes M, van Roon E, Seslija L, Schneider P, Pieters R et al. MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged infant ALL. Cell Cycle 2014; 13: 834–844.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Placke T, Faber K, Nonami A, Putwain SL, Salih HR, Heidel FH et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood 2014; 124: 13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al. Signatures of mutation and selection in the cancer genome. Nature 2010; 463: 893–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Parsons DW, Jones S, Zhang X, JC-H Lin, Leary RJ, Angenendt P et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jones S, Zhang X, Parsons DW, JC-H Lin, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Van der Velden PA, Metzelaar-Blok JA, Bergman W, Monique H, Hurks H, Frants RR et al. Promoter hypermethylation: a common cause of reduced p16(INK4a) expression in uveal melanoma. Cancer Res 2001; 61: 5303–5306.

    CAS  PubMed  Google Scholar 

  99. Rodríguez-Díez E, Quereda V, Bellutti F, Prchal-Murphy M, Partida D, Eguren M et al. Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis. Blood 2014; 124: 2380–2390.

    PubMed  Google Scholar 

  100. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA . Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368: 753–756.

    CAS  PubMed  Google Scholar 

  101. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian S V et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994; 264: 436–440.

    CAS  PubMed  Google Scholar 

  102. Tam SW, Shay JW, Pagano M . Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. Cancer Res 1994; 54: 5816–5820.

    CAS  PubMed  Google Scholar 

  103. Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES . The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 2011; 10: 2497–2503.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Aagaard L, Lukas J, Bartkova J, Kjerulff AA, Strauss M, Bartek J . Aberrations of p16Ink4 and retinoblastoma tumour-suppressor genes occur in distinct sub-sets of human cancer cell lines. Int J Cancer 1995; 61: 115–120.

    CAS  PubMed  Google Scholar 

  105. Hannon GJ, Beach D . p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994; 371: 257–261.

    CAS  PubMed  Google Scholar 

  106. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    CAS  PubMed  Google Scholar 

  107. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Dürr P et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 2006; 5: 379–389.

    CAS  PubMed  Google Scholar 

  108. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    CAS  PubMed  Google Scholar 

  109. Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott RG et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 2013; 24: 167–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res 2011; 17: 1591–1602.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Knudsen ES, Knudsen KE . Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 2008; 8: 714–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490: 116–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell 2012; 22: 438–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell 2012; 22: 452–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sulli G, Di Micco R, d’Adda di Fagagna F . Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 2012; 12: 709–720.

    CAS  PubMed  Google Scholar 

  116. Dean JL, McClendon AK, Knudsen ES . Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J Biol Chem 2012; 287: 29075–29087.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bourgo RJ, Thangavel C, Ertel A, Bergseid J, McClendon AK, Wilkens L et al. RB restricts DNA damage-initiated tumorigenesis through an LXCXE-dependent mechanism of transcriptional control. Mol Cell 2011; 43: 663–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov A V et al. Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev 2002; 16: 2923–2934.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Michaud K, Solomon DA, Oermann E, Kim J-S, Zhong W-Z, Prados MD et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 2010; 70: 3228–3238.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dean JL, Thangavel C, McClendon AK, Reed CA, Knudsen ES . Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 2010; 29: 4018–4032.

    CAS  PubMed  Google Scholar 

  121. Antony-Debré I, Steidl U . CDK6, a new target in MLL-driven leukemia. Blood 2014; 124: 5–6.

    PubMed  Google Scholar 

  122. Matushansky I, Radparvar F, Skoultchi AI . CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene 2003; 22: 4143–4149.

    CAS  PubMed  Google Scholar 

  123. Choe KS, Ujhelly O, Wontakal SN, Skoultchi AI . PU.1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. J Biol Chem 2010; 285: 3044–3052.

    CAS  PubMed  Google Scholar 

  124. Ogasawara T, Katagiri M, Yamamoto A, Hoshi K, Takato T, Nakamura K et al. Osteoclast differentiation by RANKL requires NF-kappaB-mediated downregulation of cyclin-dependent kinase 6 (Cdk6). J Bone Miner Res 2004; 19: 1128–1136.

    CAS  PubMed  Google Scholar 

  125. Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T et al. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol 2004; 24: 6560–6568.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fujimoto T, Anderson K, Jacobsen SEW, Nishikawa S-I, Nerlov C . Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J 2007; 26: 2361–2370.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu MG, Deshpande A, Schlichting N, Hinds EA, Mao C, Dose M et al. CDK6 kinase activity is required for thymocyte development. Blood 2011; 117: 6120–6131.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zacharek SJ, Xiong Y, Shumway SD . Negative regulation of TSC1-TSC2 by mammalian D-type cyclins. Cancer Res 2005; 65: 11354–11360.

    CAS  PubMed  Google Scholar 

  129. Handschick K, Beuerlein K, Jurida L, Bartkuhn M, Müller H, Soelch J et al. Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression. Mol Cell 2014; 53: 193–208.

    CAS  PubMed  Google Scholar 

  130. Buss H, Handschick K, Jurrmann N, Pekkonen P, Beuerlein K, Müller H et al. Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One 2012; 7: e51847.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ecker A, Simma O, Hoelbl A, Kenner L, Beug H, Moriggl R et al. The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor. Front Biosci (Landmark Ed 2009; 14: 2944–2958.

    CAS  Google Scholar 

  132. Perkins ND . The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer 2012; 12: 121–132.

    CAS  PubMed  Google Scholar 

  133. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S et al. CDK6 Levels Regulate Quiescence Exit in Human Hematopoietic Stem Cells. Cell Stem Cell 2015; 16: 302–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan A-S, Prchal-Murphy M, Heller G et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 2015; 125: 90–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Guzman ML . CDK6 is a regulator of stem cells “Egr” to wake up. Blood 2015; 125: 7–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    CAS  PubMed  Google Scholar 

  137. Min IM, Pietramaggiori G, Kim FS, Passegué E, Stevenson KE, Wagers AJ . The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008; 2: 380–391.

    CAS  PubMed  Google Scholar 

  138. Knudsen KE, Cavenee WK, Arden KC . D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 1999; 59: 2297–2301.

    CAS  PubMed  Google Scholar 

  139. Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J et al. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 1997; 17: 5338–5347.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pestell RG . New roles of cyclin D1. Am J Pathol 2013; 183: 3–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG, Minireview . Cyclin D1: normal and abnormal functions. Endocrinology 2004; 145: 5439–5447.

    CAS  PubMed  Google Scholar 

  142. Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 2010; 463: 374–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bienvenu F, Barré B, Giraud S, Avril S, Coqueret O . Transcriptional regulation by a DNA-associated form of cyclin D1. Mol Biol Cell 2005; 16: 1850–1858.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Inoue K, Sherr CJ . Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol Cell Biol 1998; 18: 1590–1600.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Inoue K, Roussel MF, Sherr CJ . Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 1999; 96: 3993–3998.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Inoue K, Mallakin A, Frazier DP . Dmp1 and tumor suppression. Oncogene 2007; 26: 4329–4335.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chavey C, Lagarrigue S, Annicotte J, Fajas L . Emerging roles of cell cycle regulators in adipocyte metabolism. In: Bastard JP, Fève B (eds), Physiology and Physiopathology of Adipose Tissue. Springer-Verlag: France, 2013, pp 17–26.

  148. Fu M, Wang C, Rao M, Wu X, Bouras T, Zhang X et al. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism. J Biol Chem 2005; 280: 29728–29742.

    CAS  PubMed  Google Scholar 

  149. Wang C, Pattabiraman N, Zhou JN, Fu M, Sakamaki T, Albanese C et al. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cell Biol 2003; 23: 6159–6173.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X et al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 2005; 280: 16934–16941.

    CAS  PubMed  Google Scholar 

  151. Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez R V, Kittrell FS et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 2003; 114: 323–334.

    CAS  PubMed  Google Scholar 

  152. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 2011; 474: 230–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Li Z, Jiao X, Wang C, Shirley LA, Elsaleh H, Dahl O et al. Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res 2010; 70: 8802–8811.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Jirawatnotai S, Hu Y, Livingston DM, Sicinski P . Proteomic identification of a direct role for cyclin d1 in DNA damage repair. Cancer Res 2012; 72: 4289–4293.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Casimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W et al. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Invest 2012; 122: 833–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Casimiro MC, Pestell RG . Cyclin d1 induces chromosomal instability. Oncotarget 2012; 3: 224–225.

    PubMed  PubMed Central  Google Scholar 

  157. Casimiro MC, Di Sante G, Crosariol M, Loro E, Dampier W, Ertel A et al. Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis. Oncotarget 2015; 6: 8525–8538.

    PubMed  PubMed Central  Google Scholar 

  158. Casimiro MC, Arnold A, Pestell RG . Kinase independent oncogenic cyclin D1. Aging (Albany NY) 2015; 7: 455–456.

    CAS  Google Scholar 

  159. Jares P, Colomer D, Campo E . Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7: 750–762.

    CAS  PubMed  Google Scholar 

  160. Mohammed H, D’Santos C, Serandour AA, Ali HR, Brown GD, Atkins A et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 2013; 3: 342–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA . Physical interaction of the retinoblastoma protein with human D cyclins. Cell 1993; 73: 499–511.

    CAS  PubMed  Google Scholar 

  162. Baker GL, Landis MW, Hinds PW . Multiple functions of D-type cyclins can antagonize pRb-mediated suppression of proliferation. Cell Cycle 2005; 4: 330–338.

    CAS  PubMed  Google Scholar 

  163. Hinds PW, Dowdy SF, Eaton EN, Arnold A, Weinberg RA . Function of a human cyclin gene as an oncogene. Proc Natl Acad Sci USA 1994; 91: 709–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 2006; 25: 6291–6303.

    CAS  PubMed  Google Scholar 

  165. Rubio MF, Fernandez PNL, Alvarado C V, Panelo LC, Grecco MR, Colo GP et al. Cyclin D1 is a NF-κB corepressor. Biochim Biophys Acta 2012; 1823: 1119–1131.

    CAS  PubMed  Google Scholar 

  166. Choi YJ, Sicinski P . Unexpected outcomes of CDK4/6 inhibition. Oncotarget 2013; 4: 176–177.

    PubMed  PubMed Central  Google Scholar 

  167. Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem cell reports 2013; 1: 532–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Sherr CJ . D-type cyclins. Trends Biochem Sci 1995; 20: 187–190.

    CAS  PubMed  Google Scholar 

  169. Saporita AJ, Maggi LB, Apicelli AJ, Weber JD . Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem 2007; 14: 1815–1827.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Gallagher SJ, Kefford RF, Rizos H . The ARF tumour suppressor. Int J Biochem Cell Biol 2006; 38: 1637–1641.

    CAS  PubMed  Google Scholar 

  171. Resemann HK, Watson CJ, Lloyd-Lewis B . The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol 2014; 382: 603–611.

    CAS  PubMed  Google Scholar 

  172. Ben-Neriah Y, Karin M . Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 2011; 12: 715–723.

    CAS  PubMed  Google Scholar 

  173. DiDonato JA, Mercurio F, Karin M . NF-κB and the link between inflammation and cancer. Immunol Rev 2012; 246: 379–400.

    PubMed  Google Scholar 

  174. Jing H, Kase J, Dörr JR, Milanovic M, Lenze D, Grau M et al. Opposing roles of NF-κB in anti-cancer treatment outcome unveiled by cross-species investigations. Genes Dev 2011; 25: 2137–2146.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Huberts DHEW, van der Klei IJ . Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 2010; 1803: 520–525.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Peter Alexander Martinek for technical help in the generation of figures. This work was supported by the Austrian Science Foundation (FWF) via grants to VS (SFB F47 and P24297-B23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Sexl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigan, AS., Bellutti, F., Kollmann, K. et al. CDK6—a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 35, 3083–3091 (2016). https://doi.org/10.1038/onc.2015.407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.407

  • Springer Nature Limited

This article is cited by

Navigation