Skip to main content

Advertisement

Log in

DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Cancer stem-like cells represent poorly differentiated multipotent tumor-propagating cells that contribute disproportionately to therapeutic resistance and tumor recurrence. Transcriptional mechanisms that control the phenotypic conversion of tumor cells lacking tumor-propagating potential to tumor-propagating stem-like cells remain obscure. Here we show that the reprogramming transcription factors Oct4 and Sox2 induce glioblastoma cells to become stem-like and tumor–propagating via a mechanism involving direct DNA methyl transferase (DNMT) promoter transactivation, resulting in global DNA methylation- and DNMT-dependent downregulation of multiple microRNAs (miRNAs). We show that one such downregulated miRNA, miRNA-148a, inhibits glioblastoma cell stem-like properties and tumor-propagating potential. This study identifies a novel and targetable molecular circuit by which glioma cell stemness and tumor-propagating capacity are regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  2. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Laterra J . Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 2012; 72: 576–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  5. Bibikova M, Laurent LC, Ren B, Loring JF, Fan JB . Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell 2008; 2: 123–134.

    Article  CAS  PubMed  Google Scholar 

  6. Singh RP, Shiue K, Schomberg D, Zhou FC . Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant 2009; 18: 1197–1211.

    Article  PubMed  Google Scholar 

  7. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 2010; 70: 10433–10444.

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 2011; 108: 9951–9956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rath P, Lal B, Ajala O, Li Y, Xia S, Kim J et al. In vivo c-Met pathway inhibition depletes human glioma xenografts of tumor-propagating stem-like cells. Transl Oncol 2013; 6: 104–111.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  11. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 2008; 14: 2115–2124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 2009; 69: 7569–7576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134: 521–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011; 8: 633–638.

    Article  CAS  PubMed  Google Scholar 

  15. Sato F, Tsuchiya S, Meltzer SJ, Shimizu K . MicroRNAs and epigenetics. FEBS J 2011; 278: 1598–1609.

    Article  CAS  PubMed  Google Scholar 

  16. Kim TY, Zhong S, Fields CR, Kim JH, Robertson KD . Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res 2006; 66: 7490–7501.

    Article  CAS  PubMed  Google Scholar 

  17. Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005; 25: 6031–6046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B . Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 2009; 383: 157–162.

    Article  CAS  PubMed  Google Scholar 

  19. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000; 97: 14720–14725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Son MJ, Woolard K, Nam DH, Lee J, Fine HA . SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 2009; 4: 440–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 2009; 28: 1807–1811.

    Article  CAS  PubMed  Google Scholar 

  22. Glas M, Rath BH, Simon M, Reinartz R, Schramme A, Trageser D et al. Residual tumor cells are unique cellular targets in glioblastoma. Ann Neurol 2010; 68: 264–269.

    PubMed  PubMed Central  Google Scholar 

  23. Stricker SH, Feber A, Engstrom PG, Caren H, Kurian KM, Takashima Y et al. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev 2013; 27: 654–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008; 105: 13556–13561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S . A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 2: 525–528.

    Article  CAS  PubMed  Google Scholar 

  26. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 2008; 26: 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  27. Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 2008; 28: 6426–6438.

    Article  PubMed  Google Scholar 

  28. Wang G, Guo X, Hong W, Liu Q, Wei T, Lu C et al. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci USA 2013; 110: 2858–2863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fowler A, Thomson D, Giles K, Maleki S, Mreich E, Wheeler H et al. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer 2011; 47: 953–963.

    Article  CAS  PubMed  Google Scholar 

  30. Vrba L, Munoz-Rodriguez JL, Stampfer MR, Futscher BW . miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One 2013; 8: e54398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao WG, Yu SN, Lu ZH, Ma YH, Gu YM, Chen J . The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 2010; 31: 1726–1733.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM . MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene 2013; 33: 4069–4076.

    Article  PubMed  Google Scholar 

  33. Foltz G, Yoon JG, Lee H, Ryken TC, Sibenaller Z, Ehrich M et al. DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis. Oncogene 2009; 28: 2667–2677.

    Article  CAS  PubMed  Google Scholar 

  34. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012; 483: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajendran G, Shanmuganandam K, Bendre A, Muzumdar D, Goel A, Shiras A . Epigenetic regulation of DNA methyltransferases: DNMT1 and DNMT3B in gliomas. J Neuro-Oncol 2011; 104: 483–494.

    Article  CAS  Google Scholar 

  36. Fanelli M, Caprodossi S, Ricci-Vitiani L, Porcellini A, Tomassoni-Ardori F, Amatori S et al. Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment. Oncogene 2008; 27: 358–365.

    Article  CAS  PubMed  Google Scholar 

  37. Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG . Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS ONE 2012; 7: e41036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin Cancer Res 2011; 17: 7574–7583.

    Article  CAS  PubMed  Google Scholar 

  39. Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 2014; 74: 1541–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Hale JS, Rich JN, Ransohoff RM, Lathia JD . Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. Trends Neurosci 2012; 35: 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gailhouste L, Gomez-Santos L, Hagiwara K, Hatada I, Kitagawa N, Kawaharada K et al. miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology 2013; 58: 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  42. Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci 2011; 7: 567–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe S, Peterson CL . The INO80 family of chromatin-remodeling enzymes: regulators of histone variant dynamics. Cold Spring Harb Symp Quant Biol 2010; 75: 35–42.

    Article  CAS  PubMed  Google Scholar 

  44. Reijntjes S, Francis-West P, Mankoo BS . Retinoic acid is both necessary for and inhibits myogenic commitment and differentiation in the chick limb. Int J Dev Biol 2010; 54: 125–134.

    Article  CAS  PubMed  Google Scholar 

  45. Artner I, Blanchi B, Raum JC, Guo M, Kaneko T, Cordes S et al. MafB is required for islet beta cell maturation. Proc Natl Acad Sci USA 2007; 104: 3853–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Braconi C, Huang N, Patel T . MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010; 51: 881–890.

    CAS  PubMed  Google Scholar 

  47. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R . miR-148 targets human DNMT3b protein coding region. RNA 2008; 14: 872–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J et al. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 2009; 27: 1473–1486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rohde C, Zhang Y, Reinhardt R, Jeltsch A . BISMA—fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinform 2010; 11: 230.

    Article  Google Scholar 

  50. Schmittgen TD, Jiang J, Liu Q, Yang L . A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 2004; 32: e43.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE et al. The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res 2005; 65: 9355–9362.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel Trageser for technical assistance. This work was financially supported by grants from the American Brain Tumor Association (YL), James S McDonnell Foundation (JL), and the United States NIH grants RO1NS073611 (JL) and R01NS070024 (AQ-H).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Laterra or Y Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Bertoni, H., Lal, B., Li, A. et al. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene 34, 3994–4004 (2015). https://doi.org/10.1038/onc.2014.334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.334

  • Springer Nature Limited

This article is cited by

Navigation