Skip to main content
Log in

A cadherin switch underlies malignancy in high-grade gliomas

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Although the infiltrative behavior of malignant gliomas is one of their most critical aspects, the mechanisms underlying it have not yet been elucidated. To migrate in the brain parenchyma, malignant glioma cells need to bypass the cell–cell contact inhibitory signals. Here we propose that the blinding of cell–cell contact sensing in gliomas is caused by an unusual mechanism of cadherin switch, involving the replacement of N-cadherin with R-cadherin (Rcad) at the cell–cell junctions and the activation of ERK and p27. In our model of malignant glioma, we found that Rcad expression is necessary and sufficient to release cells from contact inhibition of proliferation, and is necessary, although not sufficient, for overriding contact inhibition of migration and for tumorigenicity. Altogether, these observations suggest that Rcad is a potential target for malignant glioma therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR . Cadherin switching. J Cell Sci 2008; 121: 727–735.

    Article  CAS  PubMed  Google Scholar 

  2. Le Bras GF, Taubenslag KJ, Andl CD . The regulation of cell-cell adhesion during epithelial-mesenchymal transition, motility and tumor progression. Cell Adh Migr 2012; 6: 365–373.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  5. Lim J, Thiery JP . Epithelial-mesenchymal transitions: insights from development. Development 2012; 139: 3471–3486.

    Article  CAS  PubMed  Google Scholar 

  6. Sheehan KM, Gulmann C, Eichler GS, Weinstein JN, Barrett HL, Kay EW et al. Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene 2008; 27: 323–331.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu YM, Chen YF, Chou CY, Tang MJ, Chen JH, Wilkins RJ et al. KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res 2007; 67: 11064–11073.

    Article  CAS  PubMed  Google Scholar 

  8. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA . A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 2007; 13: 7003–7011.

    Article  CAS  PubMed  Google Scholar 

  9. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 2008; 68: 937–945.

    Article  CAS  PubMed  Google Scholar 

  10. Siletz A, Schnabel M, Kniazeva E, Schumacher AJ, Shin S, Jeruss JS et al. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models. PLoS One 2013; 8: e57180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson E, Theisen CS, Johnson KR, Wheelock MJ . R-cadherin influences cell motility via Rho family GTPases. J Biol Chem 2004; 279: 31041–31049.

    Article  CAS  PubMed  Google Scholar 

  12. Maeda M, Johnson E, Mandal SH, Lawson KR, Keim SA, Svoboda RA et al. Expression of inappropriate cadherins by epithelial tumor cells promotes endocytosis and degradation of E-cadherin via competition for p120(ctn). Oncogene 2006; 25: 4595–4604.

    Article  CAS  PubMed  Google Scholar 

  13. Inuzuka H, Miyatani S, Takeichi M . R-cadherin: a novel Ca(2+)-dependent cell-cell adhesion molecule expressed in the retina. Neuron 1991; 7: 69–79.

    Article  CAS  PubMed  Google Scholar 

  14. Kucharczak J, Charrasse S, Comunale F, Zappulla J, Robert B, Teulon-Navarro I et al. R-Cadherin expression inhibits myogenesis and induces myoblast transformation via Rac1 GTPase. Cancer Res 2008; 68: 6559–6568.

    Article  CAS  PubMed  Google Scholar 

  15. Miotto E, Sabbioni S, Veronese A, Calin GA, Gullini S, Liboni A et al. Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Res 2004; 64: 8156–8159.

    Article  CAS  PubMed  Google Scholar 

  16. Agiostratidou G, Li M, Suyama K, Badano I, Keren R, Chung S et al. Loss of retinal cadherin facilitates mammary tumor progression and metastasis. Cancer Res 2009; 69: 5030–5038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zou L, Hazan R, Roy P . Profilin-1 overexpression restores adherens junctions in MDA-MB-231 breast cancer cells in R-cadherin-dependent manner. Cell Motil Cytoskeleton 2009; 66: 1048–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Du C, Huang T, Sun D, Mo Y, Feng H, Zhou X et al. CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett 2011; 309: 54–61.

    Article  CAS  PubMed  Google Scholar 

  19. Appolloni I, Calzolari F, Tutucci E, Caviglia S, Terrile M, Corte G et al. PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors. Int J Cancer 2009; 124: 2251–2259.

    Article  CAS  PubMed  Google Scholar 

  20. Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G et al. Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia 2008; 10: 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 2009; 4: e7752.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Theisen U, Straube E, Straube A . Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions. Developmental cell 2012; 23: 1153–1166.

    Article  CAS  PubMed  Google Scholar 

  24. Nabi IR . The polarization of the motile cell. J Cell Sci 1999; 112: 1803–1811.

    CAS  PubMed  Google Scholar 

  25. Kupfer A, Louvard D, Singer SJ . Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci USA 1982; 79: 2603–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim NG, Koh E, Chen X, Gumbiner BM . E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 2011; 108: 11930–11935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levenberg S, Yarden A, Kam Z, Geiger B . p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry. Oncogene 1999; 18: 869–876.

    Article  CAS  PubMed  Google Scholar 

  28. McClatchey AI, Yap AS . Contact inhibition (of proliferation) redux. Curr Opinion Cell Biol 2012; 24: 685–694.

    Article  CAS  PubMed  Google Scholar 

  29. Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S et al. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 2011; 6: e20041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1: 269–277.

    Article  CAS  PubMed  Google Scholar 

  31. Holland EC, Hively WP, DePinho RA, Varmus HE . A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12: 3675–3685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, Duijm JE et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 2009; 69: 9065–9072.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc T et al. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One 2010; 5: e12548.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci USA 2012; 109: 3041–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P . Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 2006; 26: 6781–6790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC . PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15: 1913–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uhrbom L, Hesselager G, Nister M, Westermark B . Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 1998; 58: 5275–5279.

    CAS  PubMed  Google Scholar 

  38. Hermansson M, Nister M, Betsholtz C, Heldin CH, Westermark B, Funa K . Endothelial cell hyperplasia in human glioblastoma: coexpression of mRNA for platelet-derived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Proc Natl Acad Sci USA 1988; 85: 7748–7752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Donatis A, Comito G, Buricchi F, Vinci MC, Parenti A, Caselli A et al. Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis. J Biol Chem 2008; 283: 19948–19956.

    Article  CAS  PubMed  Google Scholar 

  40. Smith CL, Tallquist MD . PDGF function in diverse neural crest cell populations. Cell Adh Migr 2010; 4: 561–566.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McKinnon RD, Waldron S, Kiel ME . PDGF alpha-receptor signal strength controls an RTK rheostat that integrates phosphoinositol 3'-kinase and phospholipase Cgamma pathways during oligodendrocyte maturation. J Neurosci 2005; 25: 3499–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A, Fygenson DK et al. Collective and single cell behavior in epithelial contact inhibition. Proc Natl Acad Sci USA 2012; 109: 739–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lien WH, Klezovitch O, Vasioukhin V . Cadherin-catenin proteins in vertebrate development. Curr Opin Cell Biol 2006; 18: 499–506.

    Article  CAS  PubMed  Google Scholar 

  44. Mayor R, Carmona-Fontaine C . Keeping in touch with contact inhibition of locomotion. Trends iCell Biol 2010; 20: 319–328.

    Article  CAS  Google Scholar 

  45. Theveneau E, Mayor R . Cadherins in collective cell migration of mesenchymal cells. Curr Opini Cell Biol 2012; 24: 677–684.

    Article  CAS  Google Scholar 

  46. St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS . E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP1). J Cell Biol 1998; 142: 557–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Motti ML, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F et al. Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis 2005; 26: 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  48. Baum B, Settleman J, Quinlan MP . Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 2008; 19: 294–308.

    Article  CAS  PubMed  Google Scholar 

  49. Mayor R, Theveneau E . The neural crest. Development 2013; 140: 2247–2251.

    Article  CAS  PubMed  Google Scholar 

  50. Redies C . Cadherins in the central nervous system. Prog Neurobiol 2000; 61: 611–648.

    Article  CAS  PubMed  Google Scholar 

  51. Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouviere C . N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J Cell Biol 2002; 158: 953–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang C, Jacobson K, Schaller MD . MAP kinases and cell migration. J Cell Sci 2004; 117: 4619–4628.

    Article  CAS  PubMed  Google Scholar 

  53. Kim EK, Choi EJ . Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta 2010; 1802: 396–405.

    Article  CAS  PubMed  Google Scholar 

  54. Yoeli-Lerner M, Toker A . Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle 2006; 5: 603–605.

    Article  PubMed  Google Scholar 

  55. Chin YR, Toker A . Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal 2009; 21: 470–476.

    Article  CAS  PubMed  Google Scholar 

  56. Terrile M, Appolloni I, Calzolari F, Perris R, Tutucci E, Malatesta P . PDGF-B-driven gliomagenesis can occur in the absence of the proteoglycan NG2. BMC Cancer 2010; 10: 550.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Appolloni I, Curreli S, Caviglia S, Barilari M, Gambini E, Pagano A et al. Role of Btg2 in the Progression of a PDGF-Induced Oligodendroglioma Model. Int J Mol Sci 2012; 13: 14667–14678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gambini E, Reisoli E, Appolloni I, Gatta V, Campadelli-Fiume G, Menotti L et al. Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol tTher 2012; 20: 994–1001.

    Article  CAS  Google Scholar 

  59. Appolloni I, Calzolari F, Barilari M, Terrile M, Daga A, Malatesta P . Antagonistic modulation of gliomagenesis by Pax6 and Olig2 in PDGF-induced oligodendroglioma. Int J Cancer 2012; 131: E1078–E1087.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Magdalena Götz (Institute of Stem Cell Research-Helmholtz Centre Munich, Germany) for providing access to the time lapse equipment and Dr Masatoshi Takeichi (RIKEN Center for developmental biology, Kobe, Japan) for sharing plasmids. We acknowledge Dr Paola Briata, Dr Filippo Calzolari, Dr Federico Cremisi and Dr Roberto Gherzi for helpful comments on the manuscript. This work was supported by a NUSUG grant from AIRC, by the GR-2008-1135643 grant from Ministero della Salute, by Fondazione S. Paolo (Molecular and cellular basis of glioma) and by Fondazione CARIGE. ER salary was funded by the FIRC fellowship 9887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Malatesta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appolloni, I., Barilari, M., Caviglia, S. et al. A cadherin switch underlies malignancy in high-grade gliomas. Oncogene 34, 1991–2002 (2015). https://doi.org/10.1038/onc.2014.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.122

  • Springer Nature Limited

This article is cited by

Navigation