Skip to main content

Advertisement

Log in

Cross talk between the bombesin neuropeptide receptor and Sonic hedgehog pathways in small cell lung carcinoma

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Small cell lung carcinoma (SCLC) often features the upregulation of the Sonic hedgehog (Shh) pathway leading to activation of Gli transcription factors. SCLC cells secrete bombesin (BBS)-like neuropeptides that act as autocrine growth factors. Here, we show that SCLC tumor samples feature co-expression of Shh and BBS-cognate receptor (gastrin-releasing peptide receptor (GRPR)). We also demonstrate that BBS activates Gli in SCLC cells, which is crucial for BBS-mediated SCLC proliferation, because cyclopamine, an inhibitor of the Shh pathway, hampered the BBS-mediated effects. BBS binding to GRPR stimulated Gli through its downstream Gαq and Gα12/13 GTPases, and consistently, other Gαq and Gα13 coupled receptors (such as muscarinic receptor, m1, and thrombin receptor, PAR-1) and constitutively active GαqQL and Gα12/13QL mutants stimulated Gli. By using cells null for Gαq and Gα12/13, we demonstrate that these G proteins are strictly necessary for Gli activation by BBS. Moreover, by using constitutively active Rho small G-protein (Rho QL) as well as its inhibitor, C3 toxin, we show that Rho mediates G-protein-coupled receptor (GPCR)-, Gαq- and Gα12/13-dependent Gli stimulation. At the molecular level, BBS caused a significant increase in Shh gene transcription and protein secretion that was dependent on BBS-induced GPCR/Gαq-12/13/Rho mediated activation of nuclear factor κB (NFκB), which can stimulate a NF-κB response element in the Shh gene promoter. Our data identify a novel molecular network acting in SCLC linking autocrine BBS and Shh circuitries and suggest Shh inhibitors as novel therapeutic strategies against this aggressive cancer type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mulshine JL, Sullivan DC . Clinical practice. Lung cancer screening. N Engl J Med 2005; 352: 2714–2720.

    Article  CAS  Google Scholar 

  2. Zakowski MF . Pathology of small cell carcinoma of the lung. Semin Oncol 2003; 30: 3–8.

    Article  Google Scholar 

  3. Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14: 357–360.

    Article  CAS  Google Scholar 

  4. Polizio AH, Chinchilla P, Chen X, Kim S, Manning DR, Riobo NA . Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J Biol Chem 2011; 286: 19589–19596.

    Article  CAS  Google Scholar 

  5. Chinchilla P, Xiao L, Kazanietz MG, Riobo NA . Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 2010; 9: 570–579.

    Article  CAS  Google Scholar 

  6. Chen JK, Taipale J, Cooper MK, Beachy PA . Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16: 2743–2748.

    Article  CAS  Google Scholar 

  7. Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15: 3059–3087.

    Article  CAS  Google Scholar 

  8. Chuang PT, McMahon AP . Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 1999; 397: 617–621.

    Article  CAS  Google Scholar 

  9. Weaver M, Batts L, Hogan BL . Tissue interactions pattern the mesenchyme of the embryonic mouse lung. Dev Biol 2003; 258: 169–184.

    Article  CAS  Google Scholar 

  10. Ruiz i, Altaba A, Sanchez P, Dahmane N . Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002; 2: 361–372.

    Article  Google Scholar 

  11. Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem 1996; 271: 12125–12128.

    Article  CAS  Google Scholar 

  12. Pepicelli CV, Lewis PM, McMahon AP . Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 1998; 8: 1083–1086.

    Article  CAS  Google Scholar 

  13. Watkins DN, Berman DM, Baylin SB . Hedgehog signaling: progenitor phenotype in small-cell lung cancer. Cell Cycle 2003; 2: 196–198.

    Article  CAS  Google Scholar 

  14. Park KS, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med 2011; 17: 1504–1508.

    Article  CAS  Google Scholar 

  15. Carney DN, Cuttitta F, Moody TW, Minna JD . Selective stimulation of small cell lung cancer clonal growth by bombesin and gastrin-releasing peptide. Cancer Res 1987; 47: 821–825.

    CAS  PubMed  Google Scholar 

  16. Corjay MH, Dobrzanski DJ, Way JM, Viallet J, Shapira H, Worland P et al. Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells. J Biol Chem 1991; 266: 18771–18779.

    CAS  PubMed  Google Scholar 

  17. Alexander RW, Upp JR, Poston GJ, Gupta V, Townsend CM, Thompson JC . Effects of bombesin on growth of human small cell lung carcinoma in vivo. Cancer Res 1988; 48: 1439–1441.

    CAS  PubMed  Google Scholar 

  18. Toi-Scott M, Jones CL, Kane MA . Clinical correlates of bombesin-like peptide receptor subtype expression in human lung cancer cells. Lung Cancer 1996; 15: 341–354.

    Article  CAS  Google Scholar 

  19. Thomas F, Arvelo F, Antoine E, Jacrot M, Poupon MF . Antitumoral activity of bombesin analogues on small cell lung cancer xenografts: relationship with bombesin receptor expression. Cancer Res 1992; 52: 4872–4877.

    CAS  PubMed  Google Scholar 

  20. Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW et al. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 1985; 45: 2913–2923.

    CAS  PubMed  Google Scholar 

  21. Douglas AE, Heim JA, Shen F, Almada LL, Riobo NA, Fernandez-Zapico ME et al. The alpha subunit of the G protein G13 regulates activity of one or more Gli transcription factors independently of smoothened. J Biol Chem 2011; 286: 30714–30722.

    Article  CAS  Google Scholar 

  22. Offermanns S, Simon MI . Genetic analysis of mammalian G-protein signalling. Oncogene 1998; 17: 1375–1381.

    Article  CAS  Google Scholar 

  23. Chikumi H, Vazquez-Prado J, Servitja JM, Miyazaki H, Gutkind JS . Potent activation of RhoA by Galpha q and Gq-coupled receptors. J Biol Chem 2002; 277: 27130–27134.

    Article  CAS  Google Scholar 

  24. Ridley AJ, Hall A . The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389–399.

    Article  CAS  Google Scholar 

  25. Hill CS, Wynne J, Treisman R . The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 1995; 81: 1159–1170.

    Article  CAS  Google Scholar 

  26. Ye RD . Regulation of nuclear factor kappaB activation by G-protein-coupled receptors. J Leukoc Biol 2001; 70: 839–848.

    CAS  PubMed  Google Scholar 

  27. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC . Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 1997; 11: 463–475.

    Article  CAS  Google Scholar 

  28. Kasperczyk H, Baumann B, Debatin KM, Fulda S . Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J 2009; 23: 21–33.

    Article  CAS  Google Scholar 

  29. Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006; 13: 738–747.

    Article  CAS  Google Scholar 

  30. Brennan J, O'Connor T, Makuch RW, Simmons AM, Russell E, Linnoila RI et al. myc family DNA amplification in 107 tumors and tumor cell lines from patients with small cell lung cancer treated with different combination chemotherapy regimens. Cancer Res 1991; 51: 1708–1712.

    CAS  PubMed  Google Scholar 

  31. Taipale J, Beachy PA . The Hedgehog and Wnt signalling pathways in cancer. Nature 2001; 411: 349–354.

    Article  CAS  Google Scholar 

  32. Litingtung Y, Lei L, Westphal H, Chiang C . Sonic hedgehog is essential to foregut development. Nat Genet 1998; 20: 58–61.

    Article  CAS  Google Scholar 

  33. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A et al. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 1985; 316: 823–826.

    Article  CAS  Google Scholar 

  34. Zhou J, Chen J, Mokotoff M, Ball ED . Targeting gastrin-releasing peptide receptors for cancer treatment. Anticancer Drugs 2004; 15: 921–927.

    Article  CAS  Google Scholar 

  35. Kiaris H, Schally AV, Sun B, Armatis P, Groot K . Inhibition of growth of human malignant glioblastoma in nude mice by antagonists of bombesin/gastrin-releasing peptide. Oncogene 1999; 18: 7168–7173.

    Article  CAS  Google Scholar 

  36. Saurin JC, Fallavier M, Sordat B, Gevrey JC, Chayvialle JA, Abello J . Bombesin stimulates invasion and migration of Isreco1 colon carcinoma cells in a Rho-dependent manner. Cancer Res 2002; 62: 4829–4835.

    CAS  PubMed  Google Scholar 

  37. Schally AV, Szepeshazi K, Nagy A, Comaru-Schally AM, Halmos G . New approaches to therapy of cancers of the stomach, colon and pancreas based on peptide analogs. Cell Mol Life Sci 2004; 61: 1042–1068.

    Article  CAS  Google Scholar 

  38. Lango MN, Dyer KF, Lui VW, Gooding WE, Gubish C, Siegfried JM et al. Gastrin-releasing peptide receptor-mediated autocrine growth in squamous cell carcinoma of the head and neck. J Natl Cancer Inst 2002; 94: 375–383.

    Article  CAS  Google Scholar 

  39. Kim S, Hu W, Kelly DR, Hellmich MR, Evers BM, Chung DH . Gastrin-releasing peptide is a growth factor for human neuroblastomas. Ann Surg 2002; 235: 621–629 discussion 629–630.

    Article  Google Scholar 

  40. Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007; 13: 944–951.

    Article  CAS  Google Scholar 

  41. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008; 455: 406–410.

    Article  CAS  Google Scholar 

  42. Yang L, Xie G, Fan Q, Xie J . Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 2010; 29: 469–481.

    Article  Google Scholar 

  43. Bruzzese F, Rocco M, Castelli S, Di Gennaro E, Desideri A, Budillon A . Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol Cancer Ther 2009; 8: 3075–3087.

    Article  CAS  Google Scholar 

  44. Marinissen MJ, Chiariello M, Pallante M, Gutkind JS . A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 1999; 19: 4289–4301.

    Article  CAS  Google Scholar 

  45. Pacifico F, Mauro C, Barone C, Crescenzi E, Mellone S, Monaco M et al. Oncogenic and anti-apoptotic activity of NF-kappa B in human thyroid carcinomas. J Biol Chem 2004; 279: 54610–54619.

    Article  CAS  Google Scholar 

  46. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC . World Health Organization classification of tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymys, and Heart. IARC Press: Lyon, France, 2004.

    Google Scholar 

Download references

Acknowledgements

This study was in part supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) and by the Intramural Research Program of NIH, National Institute of Dental and Craniofacial Research, Z01DE00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Castellone.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellone, M., Laukkanen, M., Teramoto, H. et al. Cross talk between the bombesin neuropeptide receptor and Sonic hedgehog pathways in small cell lung carcinoma. Oncogene 34, 1679–1687 (2015). https://doi.org/10.1038/onc.2014.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.104

  • Springer Nature Limited

This article is cited by

Navigation