Skip to main content

Advertisement

Log in

Contemporary update on neoadjuvant therapy for bladder cancer

  • Review Article
  • Published:

From Nature Reviews Urology

View current issue Sign up to alerts

Key Points

  • Level 1 evidence supports the use of neoadjuvant chemotherapy preceding radical cystectomy in patients with bladder cancer

  • Poor accrual, selection bias and quality of surgery were probably confounding factors in previous randomized trials evaluating neoadjuvant chemotherapy

  • The survival benefit associated with neoadjuvant chemotherapy is modest and a risk of overtreatment with its associated adverse effects exists

  • Novel therapies might alter the current neoadjuvant paradigm; immune checkpoint inhibitors represent the most promising class of targeted agents in this setting

  • In the future, genomic characterization of bladder cancer tumours before treatment might improve prediction of individual response to drug therapy and aid in patient selection

Abstract

Administration of neoadjuvant chemotherapy preceding radical cystectomy in patients with bladder cancer remains a matter of debate. Results of prospective, randomized studies have demonstrated an overall absolute survival benefit of 5% at 5 years, provided cisplatin-based combination regimens are used. Owing to the perception of a modest survival benefit, the medical community has been slow to adopt the use of neoadjuvant chemotherapy. Other reasons for the underuse of neoadjuvant chemotherapy range from patient ineligibility to fear of delaying potentially curative surgery in nonresponders. Instead, several institutions have adopted an individualized, risk-adapted approach, in which the decision to administer chemotherapy is based on clinical stage and patient comorbidity profile. The development of new cytotoxic and targeted therapies, in particular immune checkpoint inhibitors, warrants well-designed prospective studies to test their efficacy alone or in combination in the neoadjuvant setting. Moving forward, genomic characterization of muscle-invasive bladder cancer could offer information that aids clinicians in selecting the appropriate chemotherapy regimen. Following neoadjuvant therapy, every effort should be made to ensure optimal surgery, as surgical margins and the number of removed lymph nodes are prognostic factors; thus, radical cystectomy and a meticulous extended pelvic lymph node dissection should be performed by expert surgeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Postulated mechanisms of action of PD-1, PD-L1 and PD-L2.
Figure 2: Schematic representation of intrinsic subtypes of bladder cancer143.

Similar content being viewed by others

References

  1. Ferlay, J. et al. GLOBOCAN 2012 v1.1, cancer incidence and mortality worldwide: IARC CancerBase No.11. Lyon, France: International Agency for Research on Cancer. http://globocan.iarc.fr (2014).

  2. Furrer, M. A. et al. Patients with an orthotopic low pressure bladder substitute maintain good function in long term. J. Urol. 196, 1172–1180 (2016).

    Article  PubMed  Google Scholar 

  3. Madersbacher, S. et al. Radical cystectomy for bladder cancer today-a homogeneous series without neoadjuvant therapy. J. Clin. Oncol. 21, 690–696 (2003).

    Article  PubMed  Google Scholar 

  4. Stein, J. P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hautmann, R. E., De Petriconi, R. C., Pfeiffer, C. & Volkmer, B. G. Radical cystectomy for urothelial carcinoma of the bladder without neoadjuvant or adjuvant therapy: long-term results in 1100 patients. Eur. Urol. 61, 1039–1047 (2012).

    Article  PubMed  Google Scholar 

  6. Dotan, Z. A. et al. Positive surgical margins in soft tissue following radical cystectomy for bladder cancer and cancer specific survival. J. Urol. 178, 2308–2312 (2007).

    Article  PubMed  Google Scholar 

  7. Yafi, F. A. et al. Surveillance guidelines based on recurrence patterns after radical cystectomy for bladder cancer: the Canadian Bladder Cancer Network experience. BJU Int. 110, 1317–1323 (2012).

    Article  PubMed  Google Scholar 

  8. Zehnder, P. et al. Unaltered oncological outcomes of radical cystectomy with extended lymphadenectomy over three decades. BJU Int. 112, E51–E58 (2013).

    Article  PubMed  Google Scholar 

  9. Reardon, Z. D. et al. Trends in the use of perioperative chemotherapy for localized and locally advanced muscle-invasive bladder cancer: a sign of changing tides. Eur. Urol. 67, 165–170 (2015).

    Article  PubMed  Google Scholar 

  10. Hermans, T. J. N. et al. Perioperative treatment and radical cystectomy for bladder cancer-a population based trend analysis of 10,338 patients in the Netherlands. Eur. J. Cancer 54, 18–26 (2016).

    Article  PubMed  Google Scholar 

  11. Clark, P. E. et al. NCCN Guidelines Insights: Bladder Cancer, Version 2.2016. J. Natl Compr. Canc. Netw. 14, 1213–1224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Logothetis, C. J. et al. A prospective randomized trial comparing MVAC and CISCA chemotherapy for patients with metastatic urothelial tumors. J. Clin. Oncol. 8, 1050–1055 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Loehrer, P. et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative study. J. Clin. Oncol. 10, 1066–1073 (1992).

    Article  PubMed  Google Scholar 

  14. Fleischmann, A., Thalmann, G. N., Perren, A. & Seiler, R. Tumor regression grade of urothelial bladder cancer after neoadjuvant chemotherapy: a novel and successful strategy to predict survival. Am. J. Surg. Pathol. 38, 325–332 (2014).

    Article  PubMed  Google Scholar 

  15. Bassi, P. et al. Neoadjuvant M-VAC chemotherapy of invasive bladder cancer: results of a multicenter phase III trial. J. Urol. 161 (Suppl.), 264 (1999).

    Article  Google Scholar 

  16. Cannobio, L. et al. A randomized study between neo-adjuvant chemoradiotherapy (CT-RT) before radical cystectomy and cystectomy alone in bladder cancer. A 6-year follow-up. Proc. Am. Soc. Clin. Oncol. 14, 245 (1995).

    Google Scholar 

  17. GISTV (Italian Bladder Cancer Study Group). Neoadjuvant treatment for locally advanced bladder cancer: a randomized prospective trial. J. Chemother. 8 (Suppl.), 345–346 (1996).

  18. [No authors listed.] Neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: a randomised controlled trial. International collaboration of trialists. Lancet 354, 533–540 (1999).

  19. Griffiths, G. et al. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J. Clin. Oncol. 29, 2171–2177 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sherif, A. et al. Neoadjuvant cisplatinum based combination chemotherapy in patients with invasive bladder cancer: a combined analysis of two Nordic studies. Eur. Urol. 45, 297–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Winquist, E., Kirchner, T. S., Segal, R., Chin, J. & Lukka, H. Neoadjuvant chemotherapy for transitional cell carcinoma of the bladder: a systematic review and meta-analysis. J. Urol. 171, 561–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data. Eur. Urol. 48, 202–206 (2005).

  24. Rosenblatt, R. et al. Pathologic downstaging is a surrogate marker for efficacy and increased survival following neoadjuvant chemotherapy and radical cystectomy for muscle-invasive urothelial bladder cancer. Eur. Urol. 61, 1229–1238 (2012).

    Article  PubMed  Google Scholar 

  25. Kitamura, H. et al. Randomised phase III study of neoadjuvant chemotherapy with methotrexate, doxorubicin, vinblastine and cisplatin followed by radical cystectomy compared with radical cystectomy alone for muscle-invasive bladder cancer: Japan Clinical Oncology Group Study. Ann. Oncol. 25, 1192–1198 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Von Der Maase, H. et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 23, 4602–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Zargar, H. et al. Final pathologic stage after neoadjuvant chemotherapy and radical cystectomy for bladder cancer: does pT0 predict better survival than pTa/Tis/T1? J. Urol. 195, 886–893 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Zargar, H. et al. Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur. Urol. 67, 241–249 (2015).

    Article  PubMed  Google Scholar 

  29. Lee, F. C. et al. Pathologic response rates of gemcitabine/cisplatin versus methotrexate/vinblastine/adriamycin/cisplatin neoadjuvant chemotherapy for muscle invasive urothelial bladder cancer. Adv. Urol. 2013, 317190 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Fairey, A. S. et al. Neoadjuvant chemotherapy with gemcitabine/cisplatin versus methotrexate/vinblastine/doxorubicin/cisplatin for muscle-invasive urothelial carcinoma of the bladder: a retrospective analysis from the University of Southern California. Urol. Oncol. 31, 1737–1743 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Dash, A. et al. A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective experience. Cancer 113, 2471–2477 (2008).

    Article  PubMed  Google Scholar 

  32. Galsky, M. D. et al. Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer 121, 2586–2593 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Choueiri, T. K. et al. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J. Clin. Oncol. 32, 1889–1894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plimack, E. R. et al. Accelerated methotrexate, vinblastine, doxorubicin, and cisplatin is safe, effective, and efficient neoadjuvant treatment for muscle-invasive bladder cancer: results of a multicenter phase II study with molecular correlates of response and toxicity. J. Clin. Oncol. 32, 1895–1901 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01812369 (2016).

  36. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01611662 (2015).

  37. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01589094 (2016).

  38. Plimack, E. R. et al. Neoadjuvant dose-dense gemcitabine and cisplatin in patients with muscle-invasive bladder cancer (MIBC): final results of a multicenter phase II study [abstract]. J. Clin. Oncol. 32 (Suppl.), 4513 (2014).

    Article  Google Scholar 

  39. Herr, H. W. et al. Surgical factors influence bladder cancer outcomes: a cooperative group report. J. Clin. Oncol. 22, 2781–2789 (2004). This study analysed the effect of surgical factors on outcomes in one of the major neoadjuvant chemotherapy trials.

    Article  PubMed  Google Scholar 

  40. Johnson, D. C. et al. Neoadjuvant chemotherapy for bladder cancer does not increase risk of perioperative morbidity. BJU Int. 114, 221–222 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thompson, R. H. et al. Eligibility for neoadjuvant/adjuvant cisplatin-based chemotherapy among radical cystectomy patients. BJU Int. 113, 17–21 (2014).

    Article  CAS  Google Scholar 

  42. Canter, D. et al. Baseline renal function status limits patient eligibility to receive perioperative chemotherapy for invasive bladder cancer and is minimally affected by radical cystectomy. Urology 77, 160–165 (2011).

    Article  PubMed  Google Scholar 

  43. Dash, A. et al. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer 107, 506–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Galsky, M. D. et al. A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol. 12, 211–214 (2011).

    Article  PubMed  Google Scholar 

  45. Galsky, M. D. et al. Comparative effectiveness of cisplatin-based and carboplatin-based chemotherapy for treatment of advanced urothelial carcinoma. Ann. Oncol. 23, 406–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Witjes, J. A. et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol. 65, 778–792 (2014).

    Article  PubMed  Google Scholar 

  47. Apolo, A. B., Grossman, H. B., Bajorin, D., Steinberg, G. & Kamat, A. M. Practical use of perioperative chemotherapy for muscle-invasive bladder cancer: summary of session at the Society of Urologic Oncology annual meeting. Urol. Oncol. 30, 772–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sternberg, C. N. et al. Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF versus classic M-VAC in advanced urothelial tract tumours. Eur. J. Cancer 42, 50–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Petrelli, F. et al. Correlation of pathologic complete response with survival after neoadjuvant chemotherapy in bladder cancer treated with cystectomy: a meta-analysis. Eur. Urol. 65, 350–357 (2014).

    Article  PubMed  Google Scholar 

  50. Sonpavde, G. et al. Quality of pathologic response and surgery correlate with survival for patients with completely resected bladder cancer after neoadjuvant chemotherapy. Cancer 115, 4104–4109 (2009).

    Article  PubMed  Google Scholar 

  51. Milowsky, M. I. et al. Guideline on muscle-invasive and metastatic bladder cancer (European Association of Urology guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. 34, 1945–1952 (2016).

    Article  PubMed  Google Scholar 

  52. Lee, C. T. et al. Cystectomy delay more than 3 months from initial bladder cancer diagnosis results in decreased disease specific and overall survival. J. Urol. 175, 1262–1267 (2006).

    Article  PubMed  Google Scholar 

  53. Sánchez-Ortiz, R. F. et al. An interval longer than 12 weeks between the diagnosis of muscle invasion and cystectomy is associated with worse outcome in bladder carcinoma. J. Urol. 169, 110–115 (2003).

    Article  PubMed  Google Scholar 

  54. Nielsen, M. E. et al. A delay in radical cystectomy of >3 months is not associated with a worse clinical outcome. BJU Int. 100, 1015–1020 (2007).

    Article  PubMed  Google Scholar 

  55. Haas, C. R. et al. The timing of radical cystectomy for bacillus Calmette-Guérin failure: comparison of outcomes and risk factors for prognosis. J. Urol. 195, 1704–1709 (2016).

    Article  PubMed  Google Scholar 

  56. Leow, J. J. et al. Adjuvant chemotherapy for invasive bladder cancer: a 2013 updated systematic review and meta-analysis of randomized trials. Eur. Urol. 66, 42–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Galsky, M. D. et al. Effectiveness of adjuvant chemotherapy for locally advanced bladder cancer. J. Clin. Oncol. 34, 825–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Svatek, R. S. et al. The effectiveness of off-protocol adjuvant chemotherapy for patients with urothelial carcinoma of the urinary bladder. Clin. Cancer Res. 16, 4461–4467 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Dorff, T. B. et al. Adjuvant chemotherapy for locally advanced urothelial carcinoma: an overview of the USC experience. World J. Urol. 27, 39–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Donat, S. M. et al. Potential impact of postoperative early complications on the timing of adjuvant chemotherapy in patients undergoing radical aystectomy: a high-volume tertiary cancer center experience. Eur. Urol. 55, 177–186 (2009).

    Article  PubMed  Google Scholar 

  61. Millikan, R. et al. Integrated therapy for locally advanced bladder cancer: final report of a randomized trial of cystectomy plus preoperative and postoperative M-VAC. J. Clin. Oncol. 19, 4005–4013 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Wosnitzer, M. S. et al. A comparison of the outcomes of neoadjuvant and adjuvant chemotherapy for clinical T2-T4aN0-N2M0 bladder cancer. Cancer 118, 358–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Culp, S. H. et al. Refining patient selection for neoadjuvant chemotherapy before radical cystectomy. J. Urol. 191, 40–47 (2014).

    Article  PubMed  Google Scholar 

  64. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis. Lancet 361, 1927–1934 (2003).

  65. Svatek, R. S. et al. Discrepancy between clinical and pathological stage: external validation of the impact on prognosis in an international radical cystectomy cohort. BJU Int. 107, 898–904 (2011).

    Article  PubMed  Google Scholar 

  66. Shariat, S. F. et al. Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy. Eur. Urol. 51, 137–151 (2007).

    Article  PubMed  Google Scholar 

  67. Ficarra, V. et al. Correlation between clinical and pathological staging in a series of radical cystectomies for bladder carcinoma. BJU Int. 95, 786–790 (2005).

    Article  PubMed  Google Scholar 

  68. Hollenbeck, B. K., Miller, D. C., Dunn, R. L., Montie, J. E. & Wei, J. T. The effects of stage divergence on survival after radical cystectomy for urothelial cancer. Urol. Oncol. 23, 77–81 (2005).

    Article  PubMed  Google Scholar 

  69. Scosyrev, E. et al. Do mixed histological features affect survival benefit from neoadjuvant platinum-based locally advanced bladder cancer? A secondary analysis of Southwest Oncology Group-Directed Intergroup Study (S8710). BJU Int. 108, 693–699 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Zargar-Shoshtari, K. et al. Clinical outcomes after neoadjuvant chemotherapy and radical cystectomy in the presence of urothelial carcinoma of the bladder with squamous or glandular differentiation. Clin. Genitourin. Cancer 14, 82–88 (2016).

    Article  PubMed  Google Scholar 

  71. Kastritis, E. et al. The outcome of patients with advanced pure squamous or mixed squamous and transitional urothelial carcinomas following platinum-based chemotherapy. Anticancer Res. 26, 3865–3869 (2006).

    CAS  PubMed  Google Scholar 

  72. Lynch, S. P. et al. Neoadjuvant chemotherapy in small cell urothelial cancer improves pathologic downstaging and long-term outcomes: results from a retrospective study at the MD Anderson Cancer Center. Eur. Urol. 64, 307–313 (2013).

    Article  PubMed  Google Scholar 

  73. Ghoneim, I. A. et al. Neoadjuvant systemic therapy or early cystectomy? Single-center analysis of outcomes after therapy for patients with clinically localized micropapillary urothelial carcinoma of the bladder. Urology 77, 867–870 (2011).

    Article  PubMed  Google Scholar 

  74. Kamat, A. M. et al. Micropapillary bladder cancer: a review of the University of Texas M. D. Anderson Cancer Center experience with 100 consecutive patients. Cancer 110, 62–67 (2007).

    Article  PubMed  Google Scholar 

  75. Meeks, J. J. et al. Pathological response to neoadjuvant chemotherapy for muscle-invasive micropapillary bladder cancer. BJU Int. 111, 325–330 (2013).

    Article  Google Scholar 

  76. Guo, C. C. et al. Bladder cancer gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur. Urol. 70, 611–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Willis, D. L. et al. Micropapillary bladder cancer: current treatment patterns and review of the literature. Urol. Oncol. 32, 826–832 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Black, P. C. et al. Variant histology in bladder cancer-experience in 1,246 patients undergoing cystectomy. J. Urol. 177, 502 (2007).

    Article  Google Scholar 

  79. Chaudhary, U. B. et al. Phase II trial of neoadjuvant cisplatin, gemcitabine, and bevacizumab followed by radical cystectomy in patients with muscle-invasive transitional cell carcinoma of the bladder [abstract]. J. Clin. Oncol. 29 (Suppl. 7), 276 (2011).

    Article  Google Scholar 

  80. McConkey, D. J. et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naïve urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatine with bevacizumab in urothelial cancer. Eur. Urol. 69, 855–862 (2015). This study demonstrated that gene expression profiling can be useful as a predictor of response to chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Balar, A. V. et al. Phase II trial of neoadjuvant gemcitabine and cisplatin with sunitinib in patients with muscle-invasive bladder cancer [abstract]. J. Clin. Oncol. 30 (Suppl.), 4581 (2012).

    Google Scholar 

  82. Pruthi, R. S. et al. A phase II trial of neoadjuvant erlotinib in patients with muscle-invasive bladder cancer pathological results. BJU Int. 106, 349–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00380029 (2016).

  84. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02169284 (2017).

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00749892 (2016).

  86. Hahn, N. M. et al. Neoadjuvant dasatinib for muscle-invasive bladder cancer with tissue analysis of biologic activity. Urol. Oncol. 34, 4.e11–4.e17 (2016).

    Article  CAS  Google Scholar 

  87. Sonpavde, G., Jones, B. S., Bellmunt, J., Choueiri, T. K. & Sternberg, C. N. Future directions and targeted therapies in bladder cancer. Hematol. Oncol. Clin. North Am. 29, 361–376 (2014).

    Article  PubMed  Google Scholar 

  88. Kurtoglu, M. et al. Elevating the horizon: emerging molecular and genomic targets in the treatment of advanced urothelial carcinoma. Clin. Genitourin. Cancer 13, 410–420 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bajorin, D. F. et al. Preliminary product parameter and safety results from NeuACT, a phase 2 randomized, open-label trial of DN24-02 in patients with surgically resected HER2+ urothelial cancer at high risk for recurrence [abstract]. J. Clin. Oncol. 32 (Suppl.), 4541 (2014).

    Article  Google Scholar 

  90. Fleischmann, A., Rotzer, D., Seiler, R., Studer, U. E. & Thalmann, G. N. Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur. Urol. 60, 350–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Tschui, J. et al. Morphological and molecular characteristics of HER2 amplified urothelial bladder cancer. Virchows Arch. 466, 703–710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bajorin, D. F. et al. Phase 2 trial results of DN24-02, a HER2-targeted autologous cellular immunotherapy in HER2+ urothelial cancer patients [abstract]. J. Clin. Oncol. 34 (Suppl.), 4513 (2016).

    Article  Google Scholar 

  93. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carthon, B. C. et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer. Res. 16, 2861–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, D. S., Irving, B. A. & Hodi, F. S. Molecular pathways: next-generation immunotherapy-inhibiting programmed death-ligand 1 and programmed death-1. Clin. Cancer Res. 18, 6580–6587 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Inman, B. A. et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109, 1499–1505 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Nakanishi, J. et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 56, 1173–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Grivas, P. et al. PD1, PDL1, PDL2 tumor tissue expression as predictors of response to neoadjuvant chemotherapy and outcome in bladder cancer [abstract]. J. Clin. Oncol. 34 (Suppl.), e16023 (2016).

    Article  Google Scholar 

  99. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Petrylak, D. P. et al. A phase Ia study of MPDL3280A (anti-PDL1): updated response and survival data in urothelial bladder cancer [abstract]. J. Clin. Oncol. 33 (Suppl.), 4501 (2015).

    Article  Google Scholar 

  101. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016). This study led to the approval of the first immune checkpoint inhibitor for use in patients with urothelial carcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02450331 (2016).

  104. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02302807 (2016).

  105. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02451423 (2016).

  106. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02662309 (2016).

  107. Plimack, E. R. et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol. 18, 212–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Bajorin, D. F. et al. KEYNOTE-052: phase 2 study of pembrolizumab (MK-3475) as first-line therapy for patients with unresectable or metastatic urothelial cancer ineligible for cisplatin-based therapy [abstract]. J. Clin. Oncol. 33 (Suppl.), TPS4572 (2015).

    Article  Google Scholar 

  109. Bellmunt, J. et al. KEYNOTE-045: randomized phase 3 trial of pembrolizumab (MK-3475) versus paclitaxel, docetaxel, or vinflunine for previously treated metastatic urothelial cancer [abstract]. J. Clin. Oncol. 33 (Suppl.), TPS4571 (2015).

    Article  Google Scholar 

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02500121 (2016).

  111. Sharma, P. et al. Efficacy and safety of nivolumab monotherapy in metastatic urothelial cancer: results from the phase I/II CheckMate 032 study [abstract]. J. Clin. Oncol. 34 (Suppl.), 4501 (2016).

    Article  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02632409 (2017).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02516241 (2017).

  114. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02603432 (2017).

  115. Cook, A. M., Lesterhuis, W. J., Nowak, A. K. & Lake, R. A. Chemotherapy and immunotherapy: mapping the road ahead. Curr. Opin. Immunol. 39, 23–29 (2016). This review summarizes the current understanding on the strategy of combining chemotherapy with immune checkpoint inhibitors.

    Article  CAS  PubMed  Google Scholar 

  116. Emens, L. A. & Middleton, G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol. Res. 3, 436–443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Spigel, D. R. & Socinski, M. A. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. J. Thorac. Oncol. 8, 587–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Prieto, P. A., Reuben, A., Cooper, Z. A. & Wargo, J. A. Targeted therapies combined with immune checkpoint therapy. Cancer J. 22, 138–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Galsky, M. D. et al. Phase II trial of gemcitabine + cisplatin + ipilimumab in patients with metastatic urothelial cancer [abstract]. J. Clin. Oncol. 34 (Suppl.), 357 (2016).

    Article  Google Scholar 

  120. Hoimes, C. J. et al. HCRN GU14-188: neoadjuvant pembrolizumab and gemcitabine with or without cisplatin in muscle invasive urothelial cancer [abstract]. J. Clin. Oncol. 34 (Suppl.), TPS4578 (2016).

    Article  Google Scholar 

  121. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02690558 (2016).

  122. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/nct02437370 (2016).

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02807636 (2017).

  124. Takata, R. et al. Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin. Cancer. Res. 11, 2625–2636 (2007).

    Article  Google Scholar 

  125. Weinstein, J. N. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  126. Van Allen, E. M. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 4, 1140–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Plimack, E. R. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur. Urol. 68, 959–967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Groenendijk, F. H. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur. Urol. 69, 384–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Guo, G. et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet. 45, 1459–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 31, 3133–3140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2008).

    Article  CAS  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02177695 (2017).

  133. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014). Landmark study from one of four research groups that characterized intrinsic subtypes of muscle-invasive urothelial carcinoma and their potential differential chemosensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. McConkey, D. J., Choi, W. & Dinney, C. P. Genetic subtypes of invasive bladder cancer. Curr. Opin. Urol. 25, 449–458 (2015).

    Article  PubMed  Google Scholar 

  137. Aine, M., Eriksson, P., Liedberg, F., Sjödahl, G. & Höglund, M. Biological determinants of bladder cancer gene expression subtypes. Sci. Rep. 5, 10957 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Abdollah, F. et al. Stage-specific impact of pelvic lymph node dissection on survival in patients with non-metastatic bladder cancer treated with radical cystectomy. BJU Int. 109, 1147–1154 (2012).

    Article  PubMed  Google Scholar 

  139. Dhar, N. B. et al. Outcome after radical cystectomy with limited or extended pelvic lymph node dissection. J. Urol. 179, 873–978 (2008).

    Article  PubMed  Google Scholar 

  140. Herr, H. W. Impact of the number of lymph nodes retrieved on outcome in patients with muscle invasive bladder cancer. J. Urol. 167, 1295–1298 (2002).

    Article  PubMed  Google Scholar 

  141. Weingärtner, K. et al. Anatomical basis for pelvic lymphadenectomy in prostate cancer: results of an autopsy study and implications for the clinic. J. Urol. 156, 1969–1971 (1996).

    Article  PubMed  Google Scholar 

  142. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Choi, W. et al. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer. Nat. Rev. Urol. 11, 400–410 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.P.N. researched data for the article and wrote the manuscript. Both authors made a substantial contribution to discussion of the article's content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Daniel P. Nguyen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D., Thalmann, G. Contemporary update on neoadjuvant therapy for bladder cancer. Nat Rev Urol 14, 348–358 (2017). https://doi.org/10.1038/nrurol.2017.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.30

  • Springer Nature Limited

This article is cited by

Navigation