Skip to main content

Advertisement

Log in

The changing role of TGFβ in healthy, ageing and osteoarthritic joints

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Key Points

  • Physiological loading of articular cartilage maintains transforming growth factor-β (TGFβ) signalling and prevents hypertrophic differentiation of articular chondrocytes

  • TGFβ signalling changes with ageing, at least in animal models, resulting in a loss of SMAD2–SMAD3 signalling and making articular cartilage prone to changes associated with osteoarthritis (OA)

  • Loading-induced induction of TGFβ signalling is less efficient in aged cartilage than in young cartilage, impairing the mechanism that blocks chondrocyte hypertrophic differentiation

  • During OA, high levels of active TGFβ in the joint drive fibrosis, osteophyte formation and subchondral bone changes

  • The role of TGFβ changes from protective in a young, healthy joint to pathologic in an osteoarthritic joint

Abstract

Transforming growth factor-β (TGFβ) is a pleiotropic cytokine that is important in the regulation of joint homeostasis and disease. TGFβ signalling is induced by loading and has an important function in maintaining the differentiated phenotype of articular chondrocytes. Concentrations of active TGFβ differ greatly between healthy and osteoarthritic joints, being low in healthy joints and high in osteoarthritic joints, leading to the activation of different signalling pathways in joint cells. The characteristic pathology of osteoarthritic joints, such as cartilage damage, osteophyte formation and synovial fibrosis, seems to be stimulated or even caused by the high levels of active TGFβ, in combination with altered chondrocyte signalling pathways (which are also observed in ageing joints). In this Review, the changing role of TGFβ in normal joint homeostasis, ageing and osteoarthritis is discussed: TGFβ counteracts pathological changes in a young healthy joint, alters its signalling during ageing and is a driving force of pathology in osteoarthritic joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Simplified scheme of TGFβ signalling.
Figure 2: Model of loading-induced TGFβ signalling in articular cartilage.
Figure 3: Age-related changes in TGFβ signalling in articular cartilage.
Figure 4: Role of TGFβ in a normal and an osteoarthritic joint.

Similar content being viewed by others

References

  1. Johnson, V. L. & Hunter, D. J. The epidemiology of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 28, 5–15 (2014).

    PubMed  Google Scholar 

  2. de Caestecker, M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev. 15, 1–11 (2004).

    CAS  PubMed  Google Scholar 

  3. Govinden, R. & Bhoola, K. D. Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacol. Ther. 98, 257–265 (2003).

    CAS  PubMed  Google Scholar 

  4. Unsold, C., Hyytiainen, M., Bruckner-Tuderman, L. & Keski-Oja, J. Latent TGF-β binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J. Cell Sci. 114, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  5. Sheppard, D. Integrin-mediated activation of latent transforming growth factor β. Cancer Metastasis Rev. 24, 395–402 (2005).

    CAS  PubMed  Google Scholar 

  6. Munger, J. S. et al. Latent transforming growth factor-β: structural features and mechanisms of activation. Kidney Int. 51, 1376–1382 (1997).

    CAS  PubMed  Google Scholar 

  7. Wipff, P. J. & Hinz, B. Integrins and the activation of latent transforming growth factor β1 — an intimate relationship. Eur. J. Cell Biol. 87, 601–615 (2008).

    CAS  PubMed  Google Scholar 

  8. Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    CAS  PubMed  Google Scholar 

  9. Goumans, M. J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 1743–1753 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Finnson, K. W., Parker, W. L., ten Dijke, P., Thorikay, M. & Philip, A. ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J. Bone Miner. Res. 23, 896–906 (2008).

    CAS  PubMed  Google Scholar 

  11. Blaney Davidson, E. N. et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J. Immunol. 182, 7937–7945 (2009).

    CAS  PubMed  Google Scholar 

  12. Finnson, K. W. et al. Endoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. Osteoarthritis Cartilage 18, 1518–1527 (2010).

    CAS  PubMed  Google Scholar 

  13. Chacko, B. M. et al. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat. Struct. Biol. 8, 248–253 (2001).

    CAS  PubMed  Google Scholar 

  14. Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    CAS  PubMed  Google Scholar 

  15. Daly, A. C., Randall, R. A. & Hill, C. S. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol. 28, 6889–6902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hellingman, C. A. et al. Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng. Part A 17, 1157–1167 (2011).

    CAS  PubMed  Google Scholar 

  17. Keller, B. et al. Interaction of TGFβ and BMP signaling pathways during chondrogenesis. PLoS ONE 6, e16421 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. de Kroon, L. M. et al. Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS ONE 10, e0146124 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. E. Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    CAS  PubMed  Google Scholar 

  20. Gao, L. et al. TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J. Cell Sci. 126, 5704–5713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jurvelin, J., Kiviranta, I., Tammi, M. & Helminen, J. H. Softening of canine articular cartilage after immobilization of the knee joint. Clin. Orthop. Relat. Res. 207, 246–252 (1986).

    Google Scholar 

  22. Palmoski, M. J., Colyer, R. A. & Brandt, K. D. Joint motion in the absence of normal loading does not maintain normal articular cartilage. Arthritis Rheum. 23, 325–334 (1980).

    CAS  PubMed  Google Scholar 

  23. Hinterwimmer, S. et al. Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum. 50, 2516–2520 (2004).

    CAS  PubMed  Google Scholar 

  24. Ando, A. et al. Increased expression of metalloproteinase-8 and -13 on articular cartilage in a rat immobilized knee model. Tohoku J. Exp. Med. 217, 271–278 (2009).

    CAS  PubMed  Google Scholar 

  25. Vanwanseele, B., Eckstein, F., Knecht, H., Stussi, E. & Spaepen, A. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum. 46, 2073–2078 (2002).

    CAS  PubMed  Google Scholar 

  26. Sanchez-Adams, J., Leddy, H. A., McNulty, A. L., O'Conor, C. J. & Guilak, F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr. Rheumatol. Rep. 16, 451 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Bougault, C. et al. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS ONE 7, e36964 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Furumatsu, T. et al. Tensile strain increases expression of CCN2 and COL2A1 by activating TGF-β-Smad2/3 pathway in chondrocytic cells. J. Biomech. 46, 1508–1515 (2013).

    PubMed  Google Scholar 

  29. Morales, T. I., Joyce, M. E., Sobel, M. E., Danielpour, D. & Roberts, A. B. Transforming growth factor-β in calf articular cartilage organ cultures: synthesis and distribution. Arch. Biochem. Biophys. 288, 397–405 (1991).

    CAS  PubMed  Google Scholar 

  30. Yao, J. Y. et al. Mutation analysis of the Smad3 gene in human osteoarthritis. Eur. J. Hum. Genet. 11, 714–717 (2003).

    CAS  PubMed  Google Scholar 

  31. van de Laar, I. M. et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43, 121–126 (2011).

    CAS  PubMed  Google Scholar 

  32. Wu, Q. et al. Induction of an osteoarthritis-like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice. Arthritis Rheum. 58, 3132–3144 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, X. et al. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 153, 35–46 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Serra, R. et al. Expression of a truncated, kinase-defective TGF-β type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol. 139, 541–552 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Madej, W., van Caam, A., Blaney Davidson, E. N., van der Kraan, P. M. & Buma, P. Physiological and excessive mechanical compression of articular cartilage activates Smad2/3P signaling. Osteoarthritis Cartilage 22, 1018–1025 (2014).

    CAS  PubMed  Google Scholar 

  36. Madej, W., van Caam, A., Blaney Davidson, E., Buma, P. & van der Kraan, P. M. Unloading results in rapid loss of TGFβ signaling in articular cartilage: role of loading-induced TGFβ signaling in maintenance of articular chondrocyte phenotype? Osteoarthritis Cartilage 24, 1807–1815 (2016).

    CAS  PubMed  Google Scholar 

  37. Ballock, R. T. et al. TGF-β1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev. Biol. 158, 414–429 (1993).

    CAS  PubMed  Google Scholar 

  38. Albro, M. B. et al. Shearing of synovial fluid activates latent TGF-β. Osteoarthritis Cartilage 20, 1374–1382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hinz, B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 47, 54–65 (2015).

    CAS  PubMed  Google Scholar 

  40. Ferguson, C. M. et al. Smad2 and 3 mediate transforming growth factor-β1-induced inhibition of chondrocyte maturation. Endocrinology 141, 4728–4735 (2000).

    CAS  PubMed  Google Scholar 

  41. Li, T. F. et al. Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J. Bone Miner. Res. 21, 4–16 (2006).

    PubMed  Google Scholar 

  42. Deie, M. et al. The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF-β1 or EGF. Mech. Ageing Dev. 97, 121–130 (1997).

    CAS  PubMed  Google Scholar 

  43. Iqbal, J., Dudhia, J., Bird, J. L. & Bayliss, M. T. Age-related effects of TGF-β on proteoglycan synthesis in equine articular cartilage. Biochem. Biophys. Res. Commun. 274, 467–471 (2000).

    CAS  PubMed  Google Scholar 

  44. van Beuningen, H. M., van der Kraan, P. M., Arntz, O. J. & van den Berg, W. B. In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor-β1: age-related differences. Ann. Rheum. Dis. 53, 593–600 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Scharstuhl, A., van Beuningen, H. M., Vitters, E. L., van der Kraan, P. M. & van den Berg, W. B. Loss of transforming growth factor counteraction on interleukin 1 mediated effects in cartilage of old mice. Ann. Rheum. Dis. 61, 1095–1098 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaney Davidson, E. N., Scharstuhl, A., Vitters, E. L., van der Kraan, P. M. & van den Berg, W. B. Reduced transforming growth factor-β signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res. Ther. 7, R1338–R1347 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, W. et al. Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling. J. Orthop. Res. 34, 763–770 (2016).

    CAS  PubMed  Google Scholar 

  48. Hui, W. et al. Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann. Rheum. Dis. 75, 449–458 (2016).

    CAS  PubMed  Google Scholar 

  49. van Caam, A. et al. Expression of TGFβ-family signalling components in ageing cartilage: age-related loss of TGFβ and BMP receptors. Osteoarthritis Cartilage 24, 1235–1245 (2016).

    CAS  PubMed  Google Scholar 

  50. Qureshi, H. Y., Ricci, G. & Zafarullah, M. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor β in human chondrocytes. Biochim. Biophys. Acta 1783, 1605–1612 (2008).

    CAS  PubMed  Google Scholar 

  51. Wang, X. et al. Interaction of ERK1/2 and Smad2/3 signaling pathways in TGF-β1-induced TIMP-3 expression in rat chondrocytes. Arch. Biochem. Biophys. 564, 229–236 (2014).

    CAS  PubMed  Google Scholar 

  52. Madej, W. et al. Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage. Osteoarthritis Cartilage 24, 146–157 (2016).

    CAS  PubMed  Google Scholar 

  53. Gubin, D. G., Weinert, D. & Bolotnova, T. V. Age-dependent changes of the temporal order — causes and treatment. Curr. Aging Sci. 9, 14–25 (2016).

    PubMed  Google Scholar 

  54. Weinert, D. Age-dependent changes of the circadian system. Chronobiol. Int. 17, 261–283 (2000).

    CAS  PubMed  Google Scholar 

  55. Gossan, N., Boot-Handford, R. & Meng, Q. J. Ageing and osteoarthritis: a circadian rhythm connection. Biogerontology 16, 209–219 (2015).

    CAS  PubMed  Google Scholar 

  56. Dudek, M. et al. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity. J. Clin. Invest. 126, 365–376 (2016).

    PubMed  Google Scholar 

  57. Jiang, Q., Qiu, Y. T., Chen, M. J., Zhang, Z. Y. & Yang, C. Synovial TGF-β1 and MMP-3 levels and their correlation with the progression of temporomandibular joint osteoarthritis combined with disc displacement: a preliminary study. Biomed. Rep. 1, 218–222 (2013).

    CAS  PubMed  Google Scholar 

  58. Wei, X. & Messner, K. Age- and injury-dependent concentrations of transforming growth factor-β1 and proteoglycan fragments in rabbit knee joint fluid. Osteoarthritis Cartilage 6, 10–18 (1998).

    CAS  PubMed  Google Scholar 

  59. Fava, R., Olsen, N., Keski-Oja, J., Moses, H. & Pincus, T. Active and latent forms of transforming growth factor β activity in synovial effusions. J. Exp. Med. 169, 291–296 (1989).

    CAS  PubMed  Google Scholar 

  60. Metukuri, M. R. et al. Activation of latent transforming growth factor-β1 by nitric oxide in macrophages: role of soluble guanylate cyclase and MAP kinases. Wound Repair Regen. 17, 578–588 (2009).

    PubMed  Google Scholar 

  61. Lee, J. K., Lee, Y. R., Lee, Y. H., Kim, K. & Lee, C. K. Production of TGF-β1 as a mechanism for defective antigen-presenting cell function of macrophages generated in vitro with M-CSF. Immune Netw. 9, 27–33 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. McGowan, S. E. Influences of endogenous and exogenous TGF-β on elastin in rat lung fibroblasts and aortic smooth muscle cells. Am. J. Physiol. 263, L257–L263 (1992).

    CAS  PubMed  Google Scholar 

  63. Torrego, A., Hew, M., Oates, T., Sukkar, M. & Fan Chung, K. Expression and activation of TGF-β isoforms in acute allergen-induced remodelling in asthma. Thorax 62, 307–313 (2007).

    PubMed  PubMed Central  Google Scholar 

  64. Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    CAS  PubMed  Google Scholar 

  65. Blaney Davidson, E. N., Vitters, E. L., van der Kraan, P. M. & van den Berg, W. B. Expression of transforming growth factor-β (TGFβ) and the TGFβ signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann. Rheum. Dis. 65, 1414–1421 (2006).

    CAS  PubMed  Google Scholar 

  66. Koli, K., Saharinen, J., Hyytiainen, M., Penttinen, C. & Keski-Oja, J. Latency, activation, and binding proteins of TGF-β. Microsc. Res. Tech. 52, 354–362 (2001).

    CAS  PubMed  Google Scholar 

  67. Remst, D. F. et al. TGF-β induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling. Cell Tissue Res. 355, 163–171 (2014).

    CAS  PubMed  Google Scholar 

  68. Bauge, C. et al. Interleukin-1β impairment of transforming growth factor β1 signaling by down-regulation of transforming growth factor β receptor type II and up-regulation of Smad7 in human articular chondrocytes. Arthritis Rheum. 56, 3020–3032 (2007).

    CAS  PubMed  Google Scholar 

  69. Bauge, C. et al. Interleukin-1β up-regulation of Smad7 via NF-κB activation in human chondrocytes. Arthritis Rheum. 58, 221–226 (2008).

    CAS  PubMed  Google Scholar 

  70. Matsuzaki, K. Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev. 24, 385–399 (2013).

    CAS  PubMed  Google Scholar 

  71. Yu, J. S. et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat. Commun. 6, 7212 (2015).

    PubMed  Google Scholar 

  72. Yumoto, K. et al. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. J. Biol. Chem. 288, 13467–13480 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kamato, D. et al. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell Signal. 25, 2017–2024 (2013).

    CAS  PubMed  Google Scholar 

  74. van den Bosch, M. H. et al. Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell Signal. 26, 951–958 (2014).

    CAS  PubMed  Google Scholar 

  75. Studer, R. K. & Chu, C. R. p38 MAPK and COX2 inhibition modulate human chondrocyte response to TGF-β. J. Orthop. Res. 23, 454–461 (2005).

    CAS  PubMed  Google Scholar 

  76. Guo, P., Zhao, K. W., Dong, X. Y., Sun, X. & Dong, J. T. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-β-mediated induction in epithelial cells. J. Biol. Chem. 284, 18184–18193 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wilkinson, D. S. et al. A direct intersection between p53 and transforming growth factor β pathways targets chromatin modification and transcription repression of the α-fetoprotein gene. Mol. Cell. Biol. 25, 1200–1212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Costamagna, E., Garcia, B. & Santisteban, P. The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-β repression of the sodium/iodide symporter gene. J. Biol. Chem. 279, 3439–3446 (2004).

    CAS  PubMed  Google Scholar 

  79. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    CAS  PubMed  Google Scholar 

  80. Bakker, A. C. et al. Overexpression of active TGF-β-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage 9, 128–136 (2001).

    CAS  PubMed  Google Scholar 

  81. van Beuningen, H. M., Glansbeek, H. L., van der Kraan, P. M. & van den Berg, W. B. Differential effects of local application of BMP-2 or TGF-β 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 6, 306–317 (1998).

    CAS  PubMed  Google Scholar 

  82. Scharstuhl, A., Vitters, E. L., van der Kraan, P. M. & van den Berg, W. B. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor β/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 48, 3442–3451 (2003).

    CAS  PubMed  Google Scholar 

  83. Blaney Davidson, E. N., Vitters, E. L., van den Berg, W. B. & van der Kraan, P. M. TGF β-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res. Ther. 8, R65 (2006).

    PubMed  PubMed Central  Google Scholar 

  84. Remst, D. F. et al. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol. 66, 647–656 (2014).

    CAS  PubMed  Google Scholar 

  85. Remst, D. F. et al. Osteoarthritis-related fibrosis is associated with both elevated pyridinoline cross-link formation and lysyl hydroxylase 2b expression. Osteoarthritis Cartilage 21, 157–164 (2013).

    CAS  PubMed  Google Scholar 

  86. Blaney Davidson, E. N. et al. Connective tissue growth factor/CCN2 overexpression in mouse synovial lining results in transient fibrosis and cartilage damage. Arthritis Rheum. 54, 1653–1661 (2006).

    CAS  PubMed  Google Scholar 

  87. Li, J. et al. Hyaluronan injection in murine osteoarthritis prevents TGFβ1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthritis Res. Ther. 14, R151 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Plaas, A. et al. The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 19, 1081–1090 (2011).

    CAS  PubMed  Google Scholar 

  89. van der Kraan, P. M. & van den Berg, W. B. Osteophytes: relevance and biology. Osteoarthritis Cartilage 15, 237–244 (2007).

    PubMed  Google Scholar 

  90. van Beuningen, H. M., van der Kraan, P. M., Arntz, O. J. & van den Berg, W. B. Transforming growth factor-β1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab. Invest. 71, 279–290 (1994).

    CAS  PubMed  Google Scholar 

  91. Blaney Davidson, E. N. et al. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann. Rheum. Dis. 74, 1257–1264 (2015).

    CAS  PubMed  Google Scholar 

  92. Blaney Davidson, E. N. et al. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor β-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum. 56, 4065–4073 (2007).

    CAS  PubMed  Google Scholar 

  93. Uchino, M. et al. Growth factor expression in the osteophytes of the human femoral head in osteoarthritis. Clin. Orthop. Relat. Res. 377, 119–125 (2000).

    Google Scholar 

  94. Sakao, K. et al. Asporin and transforming growth factor-β gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis. J. Orthop. Sci. 14, 738–747 (2009).

    CAS  PubMed  Google Scholar 

  95. Scharstuhl, A. et al. Inhibition of endogenous TGF-β during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J. Immunol. 169, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  96. Blitz, E., Sharir, A., Akiyama, H. & Zelzer, E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 140, 2680–2690 (2013).

    CAS  PubMed  Google Scholar 

  97. Li, T. et al. Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. 22, 1342–1359 (2013).

    CAS  PubMed  Google Scholar 

  98. Moskowitz, R. W. Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage 7, 323–324 (1999).

    CAS  PubMed  Google Scholar 

  99. Yusup, A. et al. Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 23, 1858–1864 (2015).

    CAS  PubMed  Google Scholar 

  100. Quasnichka, H. L., Anderson-MacKenzie, J. M. & Bailey, A. J. Subchondral bone and ligament changes precede cartilage degradation in guinea pig osteoarthritis. Biorheology 43, 389–397 (2006).

    PubMed  Google Scholar 

  101. Lajeunesse, D., Massicotte, F., Pelletier, J. P. & Martel-Pelletier, J. Subchondral bone sclerosis in osteoarthritis: not just an innocent bystander. Mod. Rheumatol. 13, 7–14 (2003).

    CAS  PubMed  Google Scholar 

  102. Zhen, G. et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19, 704–712 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiao, K. et al. Overexpressed TGF-β in subchondral bone leads to mandibular condyle degradation. J. Dent. Res. 93, 140–147 (2014).

    CAS  PubMed  Google Scholar 

  104. Xie, L. et al. Systemic neutralization of TGF-β attenuates osteoarthritis. Ann. NY Acad. Sci. 1376, 53–64 (2016).

    CAS  PubMed  Google Scholar 

  105. Letterio, J. J. et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 98, 2109–2119 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, K. H. et al. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor β1-producing fibroblasts. Hum. Gene Ther. 12, 1805–1813 (2001).

    CAS  PubMed  Google Scholar 

  107. Song, S. U. et al. Hyaline cartilage regeneration using mixed human chondrocytes and transforming growth factor-β1- producing chondrocytes. Tissue Eng. 11, 1516–1526 (2005).

    CAS  PubMed  Google Scholar 

  108. Guo, X. et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene. Biomed. Mater. 1, 206–215 (2006).

    CAS  PubMed  Google Scholar 

  109. Ivkovic, A. et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther. 17, 779–789 (2010).

    CAS  PubMed  Google Scholar 

  110. Zhang, P., Zhong, Z. H., Yu, H. T. & Liu, B. Exogenous expression of IL-1Ra and TGF-β1 promotes in vivo repair in experimental rabbit osteoarthritis. Scand. J. Rheumatol. 44, 404–411 (2015).

    CAS  PubMed  Google Scholar 

  111. Chen, R. et al. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis. Am. J. Pathol. 185, 2875–2885 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Principe, D. R. et al. TGF-β: duality of function between tumor prevention and carcinogenesis. J. Natl Cancer Inst. 106, djt369 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Blaney Davidson, E. N. et al. TGF-β is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthritis Cartilage 23, 478–486 (2015).

    CAS  PubMed  Google Scholar 

  114. Chen, G., Park, C. K., Xie, R. G. & Ji, R. R. Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-β secretion. J. Clin. Invest. 125, 3226–3240 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Lantero, A. et al. TGF-β and opioid receptor signaling crosstalk results in improvement of endogenous and exogenous opioid analgesia under pathological pain conditions. J. Neurosci. 34, 5385–5395 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Chen, N. F. et al. TGF-β1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. J. Pain 14, 1671–1685 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. van der Kraan.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Kraan, P. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat Rev Rheumatol 13, 155–163 (2017). https://doi.org/10.1038/nrrheum.2016.219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.219

  • Springer Nature Limited

This article is cited by

Navigation