Skip to main content

Advertisement

Log in

Mitotoxicity in distal symmetrical sensory peripheral neuropathies

  • Review Article
  • Published:

From Nature Reviews Neurology

View current issue Sign up to alerts

A Correction to this article was published on 01 July 2014

This article has been updated

Key Points

  • Experiments in animal models of chronic distal symmetrical sensory peripheral neuropathies have demonstrated mitochondrial dysfunction in primary afferent sensory neurons

  • The mitochondrial dysfunction manifests as a cellular energy deficit, and has been linked to the emergence of spontaneous discharges and compartment-specific degeneration beginning with the terminal receptor arbor of the afferent neurons

  • Although the mitotoxic mechanisms differ according to aetiology, the consequences of the energy deficit are consistent and account for the similarity of symptoms across conditions

  • According to the mitotoxicity hypothesis, drugs that protect or restore mitochondrial function could aid the prevention and treatment of chronic distal symmetrical sensory peripheral neuropathies; preliminary data support this prediction

Abstract

Chronic distal symmetrical sensory peripheral neuropathy is a common neurological complication of cancer chemotherapy, HIV treatment and diabetes. Although aetiology-specific differences in presentation are evident, the clinical signs and symptoms of these neuropathies are clearly similar. Data from animal models of neuropathic pain suggest that the similarities have a common cause: mitochondrial dysfunction in primary afferent sensory neurons. Mitochondrial dysfunction is caused by mitotoxic effects of cancer chemotherapeutic drugs of several chemical classes, HIV-associated viral proteins, and nucleoside reverse transcriptase inhibitor treatment, as well as the (possibly both direct and indirect) effects of excess glucose. The mitochondrial injury results in a chronic neuronal energy deficit, which gives rise to spontaneous nerve impulses and a compartmental neuronal degeneration that is first apparent in the terminal receptor arbor—that is, intraepidermal nerve fibres—of cutaneous afferent neurons. Preliminary data suggest that drugs that prevent mitochondrial injury or improve mitochondrial function could be useful in the treatment of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Clinical symptoms and biomarkers of chronic distal symmetrical sensory peripheral neuropathy.
Figure 2: Underlying mechanisms in the development of distal symmetrical sensory peripheral neuropathy.
Figure 3: Contribution of nitro-oxidative stress to mitochondrial dysfunction.
Figure 4: Peroxynitrite decomposition catalysts.

Similar content being viewed by others

Change history

  • 01 July 2014

    In the version of this article initially published, 'nitric oxide' was referred to as 'nitrogen oxide', and the generation of peroxynitrite by superoxide ion-nitric oxide interaction was not clearly illustrated. Moreover, the fact that selective peroxynitrite decomposition catalysts act on peroxynitrite alone, whereas dual manganese superoxide dismutase mimetics and peroxynitrite decomposition catalysts eliminate both peroxynitrite and potentially beneficial superoxide ions, was not clearly indicated in Figure 4. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Quasthoff, S. & Hartung, H. P. Chemotherapy-induced peripheral neuropathy. J. Neurol. 249, 9–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Argyriou, A. A., Iconomou, G. & Kalofonos, H. P. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112, 1593–1599 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L. & Feldman, E. L. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 11, 521–534 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Centner, C. M., Bateman, K. J. & Heckmann, J. M. Manifestations of HIV infection in the peripheral nervous system. Lancet Neurol. 12, 295–309 (2013).

    Article  PubMed  Google Scholar 

  5. Lauria, G., Merkies, I. S. & Faber, C. G. Small fibre neuropathy. Curr. Opin. Neurol. 25, 542–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Flatters, S. J. & Bennett, G. J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122, 245–257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao, W. H. & Bennett, G. J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153, 704–709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng, H., Xiao, W. H. & Bennett, G. J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp. Neurol. 232, 154–161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng, H., Xiao, W. H. & Bennett, G. J. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp. Neurol. 238, 225–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Webster, R. G., Brain, K. L., Wilson, R. H., Grem, J. L. & Vincent, A. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Br. J. Pharmacol. 146, 1027–1039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loprinzi, C. L. et al. The Paclitaxel acute pain syndrome: sensitization of nociceptors as the putative mechanism. Cancer J. 13, 399–403 (2007).

    Article  PubMed  Google Scholar 

  12. Kleggetveit, I. P. et al. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153, 2040–2047 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Xiao, W. H. & Bennett, G. J. Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain 135, 262–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Xiao, W. H. et al. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 199, 461–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Erecinska, M. & Silver, I. A. Ions and energy in mammalian brain. Prog. Neurobiol. 43, 37–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, W. H., Zheng, H. & Bennett, G. J. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 203, 194–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Han, C. et al. The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2013-306095.

  18. Argyriou, A. A. et al. Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: results from a prospective multicenter study. Cancer 119, 3570–3577 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Boyette-Davis, J. A. et al. Follow-up psychophysical studies in bortezomib-related chemoneuropathy patients. J. Pain 12, 1017–1024 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Koskinen, M. J. et al. Intraepidermal nerve fibre density in cancer patients receiving adjuvant chemotherapy. Anticancer Res. 31, 4413–4416 (2011).

    CAS  PubMed  Google Scholar 

  21. Loseth, S., Stalberg, E., Jorde, R. & Mellgren, S. I. Early diabetic neuropathy: thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J. Neurol. 255, 1197–1202 (2008).

    Article  PubMed  Google Scholar 

  22. Sumner, C. J., Sheth, S., Griffin, J. W., Cornblath, D. R. & Polydefkis, M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 60, 108–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Polydefkis, M. et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology 58, 115–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Herrmann, D. N., Griffin, J. W., Hauer, P., Cornblath, D. R. & McArthur, J. C. Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology 53, 1634–1640 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Nebuchennykh, M., Loseth, S., Lindal, S. & Mellgren, S. I. The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy. J. Neurol. 256, 1067–1075 (2009).

    Article  PubMed  Google Scholar 

  26. Bennett, G. J., Liu, G. K., Xiao, W. H., Jin, H. W. & Siau, C. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur. J. Neurosci. 33, 1667–1676 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Siau, C., Xiao, W. & Bennett, G. J. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp. Neurol. 201, 507–514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin, H. W., Flatters, S. J., Xiao, W. H., Mulhern, H. L. & Bennett, G. J. Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp. Neurol. 210, 229–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Janes, K. et al. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase. Pain 154, 2432–2440 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barriere, D. A. et al. Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization. Pain 153, 553–561 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Joseph, E. K. & Levine, J. D. Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain 121, 105–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kokotis, P. et al. Polyneuropathy induced by HIV disease and antiretroviral therapy. Clin. Neurophysiol. 124, 176–182 (2013).

    Article  PubMed  Google Scholar 

  33. Dalakas, M. C., Semino-Mora, C. & Leon-Monzon, M. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2′3′-dideoxycytidine (ddC). Lab. Invest. 81, 1537–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Lehmann, H. C., Chen, W., Borzan, J., Mankowski, J. L. & Höke, A. Mitochondrial dysfunction in distal axons contributes to human immunodeficiency virus sensory neuropathy. Ann. Neurol. 69, 100–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Campenot, R. B. & Eng, H. Protein synthesis in axons and its possible functions. J. Neurocytol. 29, 793–798 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Mocchetti, I., Bachis, A. & Avdoshina, V. Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox. Res. 21, 79–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Herzberg, U. & Sagen, J. Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J. Neuroimmunol. 116, 29–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wallace, V. C. et al. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 130, 2688–2702 (2007).

    Article  PubMed  Google Scholar 

  39. Kamerman, P. R. et al. Pathogenesis of HIV-associated sensory neuropathy: evidence from in vivo and in vitro experimental models. J. Peripher. Nerv. Syst. 17, 19–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Melli, G., Keswani, S. C., Fischer, A., Chen, W. & Hoke, A. Spatially distinct and functionally independent mechanisms of axonal degeneration in a model of HIV-associated sensory neuropathy. Brain 129, 1330–1338 (2006).

    Article  PubMed  Google Scholar 

  41. Norman, J. P. et al. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS ONE 3, e3731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lecoeur, H. et al. HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase. Cell. Death Dis. 3, e282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deniaud, A., Brenner, C. & Kroemer, G. Mitochondrial membrane permeabilization by HIV-1 Vpr. Mitochondrion 4, 223–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, C. Y., Chiang, S. F., Lin, T. Y., Chiou, S. H. & Chow, K. C. HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS ONE 7, e33657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kitayama, H. et al. Human immunodeficiency virus type 1 Vpr inhibits axonal outgrowth through induction of mitochondrial dysfunction. J. Virol. 82, 2528–2542 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Leung, G. P. Iatrogenic mitochondriopathies: a recent lesson from nucleoside/nucleotide reverse transcriptase inhibitors. Adv. Exp. Med. Biol. 942, 347–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Keswani, S. C., Jack, C., Zhou, C. & Hoke, A. Establishment of a rodent model of HIV-associated sensory neuropathy. J. Neurosci. 26, 10299–10304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robinson, B., Li, Z. & Nath, A. Nucleoside reverse transcriptase inhibitors and human immunodeficiency virus proteins cause axonal injury in human dorsal root ganglia cultures. J. Neurovirol. 13, 160–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Van Steenwinckel, J. et al. Role of spinal serotonin 5-HT2A receptor in 2′,3′-dideoxycytidine-induced neuropathic pain in the rat and the mouse. Pain 137, 66–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, W. et al. A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy. Pain 154, 560–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, Y. et al. Didanosine causes sensory neuropathy in an HIV/AIDS animal model: impaired mitochondrial and neurotrophic factor gene expression. Brain 130, 2011–2023 (2007).

    Article  PubMed  Google Scholar 

  52. Callaghan, B. C., Hur, J. & Feldman, E. L. Diabetic neuropathy: one disease or two? Curr. Opin. Neurol. 25, 536–541 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Papanas, N., Vinik, A. I. & Ziegler, D. Neuropathy in prediabetes: does the clock start ticking early? Nat. Rev. Endocrinol. 7, 682–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Sivitz, W. I. & Yorek, M. A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox. Signal. 12, 537–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chowdhury, S. K., Smith, D. R. & Fernyhough, P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol. Dis. 51, 56–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Tomlinson, D. R. & Gardiner, N. J. Glucose neurotoxicity. Nat. Rev. Neurosci. 9, 36–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Hinder, L. M., Vincent, A. M., Burant, C. F., Pennathur, S. & Feldman, E. L. Bioenergetics in diabetic neuropathy: what we need to know. J. Peripher. Nerv. Syst. 17 (Suppl. 2), 10–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zenker, J., Ziegler, D. & Chrast, R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 36, 439–449 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Eberhardt, M. J. et al. Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J. Biol. Chem. 287, 28291–28306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fernyhough, P., Roy Chowdhury, S. K. & Schmidt, R. E. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev. Endocrinol. Metab. 5, 39–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roy Chowdhury, S. K. et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135, 1751–1766 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chowdhury, S. K. et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59, 1082–1091 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Akude, E. et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 60, 288–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Urban, M. J. et al. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp. Neurol. 235, 388–396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saleh, A. et al. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 65, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Vincent, A. M. et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 120, 477–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Obrosova, I. G. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 6, 638–647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Golbidi, S., Badran, M. & Laher, I. Diabetes and alpha lipoic acid. Front. Pharmacol. 2, 69 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stevens, M. J., Obrosova, I., Cao, X., Van Huysen, C. & Greene, D. A. Effects of DL-α-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49, 1006–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Melli, G. et al. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp. Neurol. 214, 276–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Boulton, A. J., Kempler, P., Ametov, A. & Ziegler, D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab. Res. Rev. 29, 327–333 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Trevisan, G. et al. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res. 73, 3120–3131 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Gedlicka, C., Scheithauer, W., Schull, B. & Kornek, G. V. Effective treatment of oxaliplatin-induced cumulative polyneuropathy with alpha-lipoic acid. J. Clin. Oncol. 20, 3359–3361 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Chiechio, S., Copani, A., Nicoletti, F. & Gereau, R. W. 4th. L-acetylcarnitine: a proposed therapeutic agent for painful peripheral neuropathies. Curr. Neuropharmacol. 4, 233–237 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sima, A. A., Calvani, M., Mehra, M., Amato, A. & Acetyl-L-Carnitine Study Group. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials. Diabetes Care 28, 89–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Youle, M., Osio, M. & ALCAR Study Group. A double-blind, parallel-group, placebo-controlled, multicentre study of acetyl L-carnitine in the symptomatic treatment of antiretroviral toxic neuropathy in patients with HIV-1 infection. HIV Med. 8, 241–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Bianchi, G. et al. Symptomatic and neurophysiological responses of paclitaxel- or cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur. J. Cancer 41, 1746–1750 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Hershman, D. L. et al. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J. Clin. Oncol. 31, 2627–2633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiao, W. H., Zheng, F. Y., Bennett, G. J., Bordet, T. & Pruss, R. M. Olesoxime (cholest-4-en-3-one, oxime): analgesic and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel. Pain 147, 202–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cassina, A. & Radi, R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys. 328, 309–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Radi, R., Cassina, A., Hodara, R., Quijano, C. & Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451–1464 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Drose, S. & Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748, 145–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Fidanboylu, M., Griffiths, L. A. & Flatters, S. J. Global inhibition of reactive oxygen species (ROS) inhibits paclitaxel-induced painful peripheral neuropathy. PLoS ONE 6, e25212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Toyama, S. et al. Characterization of acute and chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted antioxidant on the neuropathies. Anesthesiology 120, 459–473 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Kamboj, S. S., Vasishta, R. K. & Sandhir, R. N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J. Neurochem. 112, 77–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, P. C. et al. N-acetylcysteine has neuroprotective effects against oxaliplatin-based adjuvant chemotherapy in colon cancer patients: preliminary data. Support. Care Cancer 14, 484–487 (2006).

    Article  PubMed  Google Scholar 

  87. Cascinu, S. et al. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 20, 3478–3483 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Doyle, T. et al. Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J. Neurosci. 32, 6149–6160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. & Freeman, B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA 87, 1620–1624 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Payne, J. E. et al. Discovery of dual inducible/neuronal nitric oxide synthase (iNOS/nNOS) inhibitor development candidate 4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7, 8-difluoroquinolin-2(1H)-one (KD7332) Part 2: identification of a novel, potent, and selective series of benzimidazole-quinolinone iNOS/nNOS dimerization inhibitors that are orally active in pain models. J. Med. Chem. 53, 7739–7755 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rausaria, S. et al. Retooling manganese(III) porphyrin-based peroxynitrite decomposition catalysts for selectivity and oral activity: a potential new strategy for treating chronic pain. J. Med. Chem. 54, 8658–8669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rausaria, S. et al. Manganese(III) complexes of bis(hydroxyphenyl)dipyrromethenes are potent orally active peroxynitrite scavengers. J. Am. Chem. Soc. 133, 4200–4203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We regret that space limitations prevented us from giving proper acknowledgement in the reference list of the many investigators who have contributed to this field. To compensate, we have attempted to cite recent articles that do reference their contributions.

Author information

Authors and Affiliations

Authors

Contributions

All three authors provided substantial contributions to discussions of the content of the manuscript, researched the literature, and participated in writing, editing and revision of the manuscript.

Corresponding author

Correspondence to Gary J. Bennett.

Ethics declarations

Competing interests

D.S. and the Saint Louis University School of Medicine have patents concerning the use of superoxide dismutase mimetics and peroxynitrite decomposition catalysts for the treatment and prevention of neuropathic pain (WO 2012033916 A1 20120315; US 20080318917 A1 20081225; WO 2005060437 A2 20050707; US 6214817 B1 20010410; WO 9858636 A1 19981230). G.J.B and T.D. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, G., Doyle, T. & Salvemini, D. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10, 326–336 (2014). https://doi.org/10.1038/nrneurol.2014.77

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.77

  • Springer Nature Limited

This article is cited by

Navigation