Skip to main content

Advertisement

Log in

Magnesium and cardiovascular complications of chronic kidney disease

  • Review Article
  • Published:

From Nature Reviews Nephrology

View current issue Sign up to alerts

Key Points

  • Maintenance of normal serum levels of magnesium depends on net absorption in the gut, uptake by and release from bone, and net excretion in the kidney

  • Patients with advanced chronic kidney disease (CKD) often have high serum magnesium concentrations

  • Experimental studies suggest that modulation of extracellular magnesium concentrations affects vascular calcification and arterial function via effects on vascular smooth muscle cells and the endothelium

  • Several different mechanisms exist by which magnesium might inhibit the process of vascular calcification in CKD

  • Epidemiologic studies indicate possible links between serum magnesium levels, the incidence of CKD, and adverse outcomes, including mortality, in the general population and in patients with CKD

  • Data from small, preliminary studies suggest beneficial effects of oral magnesium supplementation on cardiovascular calcification and surrogate parameters of atherosclerosis

Abstract

Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Abundant experimental evidence suggests a physiological role of magnesium in cardiovascular function, and clinical evidence suggests a role of the cation in cardiovascular disease in the general population. The role of magnesium in CKD–mineral and bone disorder, and in particular its impact on cardiovascular morbidity and mortality in patients with CKD, is however not well understood. Experimental studies have shown that magnesium inhibits vascular calcification, both by direct effects on the vessel wall and by indirect, systemic effects. Moreover, an increasing number of epidemiologic studies in patients with CKD have shown associations of serum magnesium levels with intermediate and hard outcomes, including vascular calcification, cardiovascular events and mortality. Intervention trials in these patients conducted to date have had small sample sizes and have been limited to the study of surrogate parameters, such as arterial stiffness, vascular calcification and atherosclerosis. Randomized controlled trials are clearly needed to determine the effects of magnesium supplementation on hard outcomes in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The putative inhibitory effects of magnesium on the process of vascular calcification.
Figure 2: Magnesium reduces phosphate-induced calcification in human aortic VSMCs.
Figure 3: Magnesium reduces the progression of vascular calcification in rats with adenine-induced CKD.
Figure 4: Fully adjusted association between serum magnesium level and all-cause mortality in patients on long-term haemodialysis.

Similar content being viewed by others

References

  1. Houillier, P. Mechanisms and regulation of renal magnesium transport. Annu. Rev. Physiol. 76, 411–430 (2014).

    PubMed  Google Scholar 

  2. Konrad, M. & Schlingmann, K. P. Inherited disorders of renal hypomagnesaemia. Nephrol. Dial. Transplant. 29 (Suppl. 4), iv63–iv71 (2014).

    CAS  PubMed  Google Scholar 

  3. Cunningham, J., Rodriguez, M. & Messa, P. Magnesium in chronic kidney disease stages 3 and 4 and in dialysis patients. Clin. Kidney J. 5 (Suppl. 1), i39–i51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. http://dx.doi.org/10.2215/CJN.09750913.

  5. Shechter, M. Magnesium and cardiovascular system. Magnes. Res. 23, 60–72 (2010).

    CAS  PubMed  Google Scholar 

  6. Joosten, M. M. et al. Urinary magnesium excretion and risk of hypertension: the prevention of renal and vascular end-stage disease study. Hypertension 61, 1161–1167 (2013).

    CAS  PubMed  Google Scholar 

  7. Joosten, M. M. et al. Urinary and plasma magnesium and risk of ischemic heart disease. Am. J. Clin. Nutr. 97, 1299–1306 (2013).

    CAS  PubMed  Google Scholar 

  8. Dong, J. Y., Xun, P., He, K. & Qin, L. Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34, 2116–2122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. von Dadelszen, P. & Magee, L. A. Pre-eclampsia: an update. Curr. Hypertens. Rep. 16, 454 (2014).

    PubMed  Google Scholar 

  10. Qu, X. et al. Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. PLoS ONE 8, e57720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lutsey, P. L. et al. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 100, 756–764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guasch-Ferre, M. et al. Dietary magnesium intake is inversely associated with mortality in adults at high cardiovascular disease risk. J. Nutr. 144, 55–60 (2014).

    CAS  PubMed  Google Scholar 

  13. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kdney disease–mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 113, S1–S130 (2009).

  14. Sakaguchi, Y. et al. Hypomagnesemia in type 2 diabetic nephropathy: a novel predictor of end-stage renal disease. Diabetes Care 35, 1591–1597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tin, A. et al. Results from the Atherosclerosis Risk in Communities study suggest that low serum magnesium is associated with incident kidney disease. Kidney Int. 87, 820–827 (2015).

    CAS  PubMed  Google Scholar 

  16. Van Laecke, S., Nagler, E. V., Verbeke, F., Van Biesen, W. & Vanholder, R. Hypomagnesemia and the risk of death and GFR decline in chronic kidney disease. Am. J. Med. 126, 825–831 (2013).

    CAS  PubMed  Google Scholar 

  17. Van Laecke, S. et al. The effect of magnesium supplements on early post-transplantation glucose metabolism: a randomized controlled trial. Transpl. Int. 27, 895–902 (2014).

    CAS  PubMed  Google Scholar 

  18. Alves, S. C. et al. Hypomagnesemia as a risk factor for the non-recovery of the renal function in critically ill patients with acute kidney injury. Nephrol. Dial. Transplant. 28, 910–916 (2013).

    PubMed  Google Scholar 

  19. Spiegel, D. M. & Farmer, B. Long-term effects of magnesium carbonate on coronary artery calcification and bone mineral density in hemodialysis patients: a pilot study. Hemodial. Int. 13, 453–459 (2009).

    PubMed  Google Scholar 

  20. Turgut, F. et al. Magnesium supplementation helps to improve carotid intima media thickness in patients on hemodialysis. Int. Urol. Nephrol. 40, 1075–1082 (2008).

    CAS  PubMed  Google Scholar 

  21. Gorgels, T. G. et al. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. J. Mol. Med. (Berl.) 88, 467–475 (2010).

    CAS  Google Scholar 

  22. Louvet, L., Buchel, J., Steppan, S., Passlick-Deetjen, J. & Massy, Z. A. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol. Dial. Transplant. 28, 869–878 (2013).

    CAS  PubMed  Google Scholar 

  23. Neven, E. et al. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats. PLoS ONE 9, e107067 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Kircelli, F. et al. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner. Nephrol. Dial. Transplant. 27, 514–521 (2012).

    CAS  PubMed  Google Scholar 

  25. Montezano, A. C. et al. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56, 453–462 (2010).

    CAS  PubMed  Google Scholar 

  26. Covic, A. et al. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol. Dial. Transplant. 28, 2383–2392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. de Francisco, A. L. et al. Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability. Nephrol. Dial. Transplant. 25, 3707–3717 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsumoto, T., Fukushima, S., Kaanasaki, T. & Hagino, S. Relationship between aortic mineral elements and osteodystrophy in mice with chronic kidney disease. Biol. Trace Elem. Res. 150, 278–284 (2012).

    PubMed  Google Scholar 

  29. Salem, S. et al. Relationship between magnesium and clinical biomarkers on inhibition of vascular calcification. Am. J. Nephrol. 35, 31–39 (2012).

    CAS  PubMed  Google Scholar 

  30. LaRusso, J., Li, Q., Jiang, Q. & Uitto, J. Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6−/−). J. Invest. Dermatol. 129, 1388–1394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng, P. T., Grabher, J. J. & LeGeros, R. Z. Effects of magnesium on calcium phosphate formation. Magnesium 7, 123–132 (1988).

    CAS  PubMed  Google Scholar 

  32. Lagier, R. & Baud, C. A. Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology. Pathol. Res. Pract. 199, 329–335 (2003).

    CAS  PubMed  Google Scholar 

  33. Boskey, A. L. & Posner, A. S. Effect of magnesium on lipid-induced calcification: an in vitro model for bone mineralization. Calcif. Tissue Int. 32, 139–143 (1980).

    CAS  PubMed  Google Scholar 

  34. Termine, J. D., Peckauskas, R. A. & Posner, A. S. Calcium phosphate formation in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys. 140, 318–325 (1970).

    CAS  PubMed  Google Scholar 

  35. Louvet, L. et al. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium. PLoS ONE 10, e0115342 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. Bennett, R. M., Lehr, J. R. & McCarty, D. J. Factors affecting the solubility of calcium pyrophosphate dihydrate crystals. J. Clin. Invest. 56, 1571–1579 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Contiguglia, S. R., Alfrey, A. C., Miller, N. L., Runnells, D. E. & Le Geros, R. Z. Nature of soft tissue calcification in uremia. Kidney Int. 4, 229–235 (1973).

    CAS  PubMed  Google Scholar 

  38. Schlieper, G. et al. Ultrastructural analysis of vascular calcifications in uremia. J. Am. Soc. Nephrol. 21, 689–696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Verberckmoes, S. C. et al. Uremia-related vascular calcification: more than apatite deposition. Kidney Int. 71, 298–303 (2007).

    CAS  PubMed  Google Scholar 

  40. Montes de Oca, A. et al. Magnesium inhibits Wnt/β-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS ONE 9, e89525 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Henaut, L. et al. Calcimimetics increase CaSR expression and reduce mineralization in vascular smooth muscle cells: mechanisms of action. Cardiovasc. Res. 101, 256–265 (2014).

    CAS  PubMed  Google Scholar 

  42. Ivanovski, O. et al. The calcimimetic R-568 retards uremia-enhanced vascular calcification and atherosclerosis in apolipoprotein E deficient (apoE−/−) mice. Atherosclerosis 205, 55–62 (2009).

    CAS  PubMed  Google Scholar 

  43. Mendoza, F. J. et al. Effect of calcium and the calcimimetic AMG 641 on matrix-Gla protein in vascular smooth muscle cells. Calcif. Tissue Int. 88, 169–178 (2011).

    CAS  PubMed  Google Scholar 

  44. Alam, M. U. et al. Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc. Res. 81, 260–268 (2009).

    CAS  PubMed  Google Scholar 

  45. Rodriguez-Ortiz, M. E. et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol. Dial. Transplant. 29, 282–289 (2014).

    CAS  PubMed  Google Scholar 

  46. Quinn, S. J. et al. CaSR-mediated interactions between calcium and magnesium homeostasis in mice. Am. J. Physiol. Endocrinol. Metab. 304, E724–E733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Altura, B. M. et al. Mg2+–Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can. J. Physiol. Pharmacol. 65, 729–745 (1987).

    CAS  PubMed  Google Scholar 

  48. Zhang, J. et al. Role of Cav1.2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+. Am. J. Physiol. Heart Circ. Physiol. 292, H415–H425 (2007).

    CAS  PubMed  Google Scholar 

  49. Bernardini, D., Nasulewic, A., Mazur, A. & Maier, J. A. Magnesium and microvascular endothelial cells: a role in inflammation and angiogenesis. Front Biosci. 10, 1177–1182 (2005).

    CAS  PubMed  Google Scholar 

  50. Tavasoli, R. A., Soltani, N., Keshavarz, M. & Shorabipour, S. Mg2+-induced adenosine-receptor mediated relaxations in mesenteric vascular beds of diabetic rats. Gen. Physiol. Biophys. 31, 409–413 (2012).

    CAS  PubMed  Google Scholar 

  51. Jiang, Q. & Uitto, J. Restricting dietary magnesium accelerates ectopic connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6−/−). Exp. Dermatol. 21, 694–699 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. De Schutter, T. M. et al. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia. Kidney Int. 83, 1109–1117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Katsumata, S. I., Matsuzaki, H., Uehara, M. & Suzuki, K. Effect of dietary magnesium supplementation on bone loss in rats fed a high phosphorus diet. Magnes. Res. 18, 91–96 (2005).

    CAS  PubMed  Google Scholar 

  54. Matsuzaki, H., Fuchigami, M. & Miwa, M. Dietary magnesium supplementation suppresses bone resorption via inhibition of parathyroid hormone secretion in rats fed a high-phosphorus diet. Magnes. Res. 23, 126–130 (2010).

    CAS  PubMed  Google Scholar 

  55. Towler, D. A. Arteriosclerosis, bone biology, and calciotropic hormone signaling: learning the ABCs of disease in the bone–vascular axis. J. Am. Soc. Nephrol. 26, 243–245 (2015).

    CAS  PubMed  Google Scholar 

  56. Vervloet, M. G. et al. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol. 2, 427–436 (2014).

    PubMed  Google Scholar 

  57. Pages, N. et al. Structural alterations of the vascular wall in magnesium-deficient mice. A possible role of gelatinases A (MMP-2) and B (MMP-9). Magnes. Res. 16, 43–48 (2003).

    CAS  PubMed  Google Scholar 

  58. Paravicini, T. M., Yogi, A., Mazur, A. & Touyz, R. M. Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension 53, 423–429 (2009).

    CAS  PubMed  Google Scholar 

  59. Kupetsky, E. A., Rincon, F. & Uitto, J. Rate of change of carotid intima-media thickness with magnesium administration in Abcc6−/− mice. Clin. Transl. Sci. 6, 485–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamaguchi, Y., Kitagawa, S., Kunitomo, M. & Fujiwara, M. Preventive effects of magnesium on raised serum lipid peroxide levels and aortic cholesterol deposition in mice fed an atherogenic diet. Magnes. Res. 7, 31–37 (1994).

    CAS  PubMed  Google Scholar 

  61. Sherer, Y. et al. Magnesium fortification of drinking water suppresses atherogenesis in male LDL-receptor-deficient mice. Pathobiology 67, 207–213 (1999).

    CAS  PubMed  Google Scholar 

  62. Sherer, Y. et al. Suppression of atherogenesis in female low-density lipoprotein receptor knockout mice following magnesium fortification of drinking water: the importance of diet. Pathobiology 68, 93–98 (2000).

    CAS  PubMed  Google Scholar 

  63. Mak, I. T. et al. Activation of the neutrophil and loss of plasma glutathione during Mg-deficiency—modulation by nitric oxide synthase inhibition. Mol. Cell Biochem. 176, 35–39 (1997).

    CAS  PubMed  Google Scholar 

  64. Malpuech-Brugere, C. et al. Inflammatory response following acute magnesium deficiency in the rat. Biochim. Biophys. Acta 1501, 91–98 (2000).

    CAS  PubMed  Google Scholar 

  65. Rude, R. K. et al. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos. Int. 17, 1022–1032 (2006).

    CAS  PubMed  Google Scholar 

  66. Rude, R. K. et al. Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis factor-α. J. Nutr. 134, 79–85 (2004).

    CAS  PubMed  Google Scholar 

  67. Matsuzaki, H., Kajita, Y. & Miwa, M. Magnesium deficiency increases serum fibroblast growth factor-23 levels in rats. Magnes. Res. 26, 18–23 (2013).

    CAS  PubMed  Google Scholar 

  68. Matsuzaki, H., Katsumata, S., Kajita, Y. & Miwa, M. Magnesium deficiency regulates vitamin D metabolizing enzymes and type II sodium-phosphate cotransporter mRNA expression in rats. Magnes. Res. 26, 83–86 (2013).

    CAS  PubMed  Google Scholar 

  69. de Baaij, J. H., Hoenderop, J. G. & Bindels, R. J. Magnesium in man: implications for health and disease. Physiol. Rev. 95, 1–46 (2015).

    PubMed  Google Scholar 

  70. Agus, Z. S. Hypomagnesemia. J. Am. Soc. Nephrol. 10, 1616–1622 (1999).

    CAS  PubMed  Google Scholar 

  71. Chakraborti, S. et al. Protective role of magnesium in cardiovascular diseases: a review. Mol. Cell Biochem. 238, 163–179 (2002).

    CAS  PubMed  Google Scholar 

  72. Ma, J. et al. Associations of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: the ARIC study. J. Clin. Epidemiol. 48, 927–940 (1995).

    CAS  PubMed  Google Scholar 

  73. Tso, E. L. & Barish, R. A. Magnesium: clinical considerations. J. Emerg. Med. 10, 735–745 (1992).

    CAS  PubMed  Google Scholar 

  74. Jahnen-Dechent, W. & Ketteler, M. Magnesium basics. Clin. Kidney J. 5 (Suppl. 1), i3–i14 (2013).

    Google Scholar 

  75. Meema, H. E., Oreopoulos, D. G. & Rapoport, A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 32, 388–394 (1987).

    CAS  PubMed  Google Scholar 

  76. Ishimura, E. et al. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin. Nephrol. 68, 222–227 (2007).

    CAS  PubMed  Google Scholar 

  77. Tzanakis, I. et al. Mitral annular calcifications in haemodialysis patients: a possible protective role of magnesium. Nephrol. Dial. Transplant. 12, 2036–2037 (1997).

    CAS  PubMed  Google Scholar 

  78. Hruby, A. et al. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. JACC Cardiovasc. Imaging 7, 59–69 (2014).

    PubMed  Google Scholar 

  79. Tzanakis, I. et al. Intra and extracellular magnesium levels and atheromatosis in haemodialysis patients. Magnes. Res. 17, 102–108 (2004).

    CAS  PubMed  Google Scholar 

  80. Kanbay, M. et al. Relationship between serum magnesium levels and cardiovascular events in chronic kidney disease patients. Am. J. Nephrol. 36, 228–237 (2012).

    CAS  PubMed  Google Scholar 

  81. Fragoso, A., Silva, P. A., Gundlach, K., Büchel, J. & Leao-Neves, P. Magnesium and FGF-23 are independent predictors of pulse pressure in pre-dialysis diabetic chronic kidney disease patients. Clin. Kidney J. 7, 161–166 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Laecke, S. et al. The relation between hypomagnesaemia and vascular stiffness in renal transplant recipients. Nephrol. Dial. Transplant. 26, 2362–2369 (2011).

    CAS  PubMed  Google Scholar 

  83. Hashimoto, T. et al. Serum magnesium, ambulatory blood pressure, and carotid artery alteration: the Ohasama study. Am. J. Hypertens. 23, 1292–1298 (2010).

    PubMed  Google Scholar 

  84. Liao, F., Folsom, A. R. & Brancati, F. L. Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 136, 480–490 (1998).

    CAS  PubMed  Google Scholar 

  85. Silva, A. P. et al. Magnesium and mortality in patients with diabetes and early chronic kidney disease. J. Diabetes Metab. 5, 1000347 (2014).

    Google Scholar 

  86. Ishimura, E., Okuno, S., Yamakawa, T., Inaba, M. & Nishizawa, Y. Serum magnesium concentration is a significant predictor of mortality in maintenance hemodialysis patients. Magnes. Res. 20, 237–244 (2007).

    CAS  PubMed  Google Scholar 

  87. Sakaguchi, Y. et al. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 85, 174–181 (2014).

    CAS  PubMed  Google Scholar 

  88. Sakaguchi, Y. et al. Magnesium modifies the cardiovascular mortality risk associated with hyperphosphatemia in patients undergoing hemodialysis: a cohort study. PLoS ONE 9, e116273 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Massy, Z. A. & Drueke, T. B. Magnesium and outcomes in patients with chronic kidney disease: focus on vascular calcification, atherosclerosis and survival. Clin. Kidney J. 5 (Suppl. 1), i52–i61 (2013).

    Google Scholar 

  90. Tzanakis, I. P. et al. Magnesium retards the progress of the arterial calcifications in hemodialysis patients: a pilot study. Int. Urol. Nephrol. 46, 2199–2205 (2014).

    CAS  PubMed  Google Scholar 

  91. Ceremuzynski, L., Jurgiel, R., Kulakowski, P. & Gebalska, J. Threatening arrhythmias in acute myocardial infarction are prevented by intravenous magnesium sulfate. Am. Heart J. 118, 1333–1334 (1989).

    CAS  PubMed  Google Scholar 

  92. Horner, S. M. Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality. Meta-analysis of magnesium in acute myocardial infarction. Circulation 86, 774–779 (1992).

    CAS  PubMed  Google Scholar 

  93. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet 345, 669–685 (1995).

  94. Magnesium in Coronaries (MAGIC) Trial Investigators. Early administration of intravenous magnesium to high-risk patients with acute myocardial infarction in the Magnesium in Coronaries (MAGIC) Trial: a randomised controlled trial. Lancet 360, 1189–1196 (2002).

  95. Reynolds, J. L. et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol. 15, 2857–2867 (2004).

    CAS  PubMed  Google Scholar 

  96. Massry, S. G. & Glassock, R. J. (Eds) Textbook of Nephrology (Williams & Wilkins, 1989).

    Google Scholar 

  97. Navarro-Gonzalez, J. F. et al. Clinical implications of disordered magnesium homeostasis in chronic renal failure and dialysis. Semin. Dial. 22, 37–44 (2009).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, discussed the content, wrote the manuscript and reviewed the manuscript before submission.

Corresponding author

Correspondence to Ziad A. Massy.

Ethics declarations

Competing interests

Z.A.M. has received speakers' honoraria and research grants from Amgen, Genzyme, Fresenius Medical Care and Shire. T.B.D. has received advisor and/or consultancy honoraria from Amgen, Fresenius Medical Care and Sanofi, and speaker honoraria from Amgen, Sanofi and Kirin.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massy, Z., Drüeke, T. Magnesium and cardiovascular complications of chronic kidney disease. Nat Rev Nephrol 11, 432–442 (2015). https://doi.org/10.1038/nrneph.2015.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.74

  • Springer Nature Limited

This article is cited by

Navigation