Skip to main content

Advertisement

Log in

Urea transporter proteins as targets for small-molecule diuretics

  • Review Article
  • Published:

From Nature Reviews Nephrology

View current issue Sign up to alerts

Key Points

  • Urea transporter (UT) proteins facilitate the passive transport of urea driven by a concentration gradient across the cell plasma membrane in some kidney and extrarenal cells

  • The kidney expresses UT-A1 and UT-A3 in inner medullary collecting duct epithelium, UT-A2 in thin descending limbs of the loop of Henle, and UT-B in descending vasa recta endothelium

  • Kidney UTs are required for the generation of concentrated urine

  • High-throughput screening has identified potent and selective small-molecule inhibitors of UT-A and UT-B that produce a salt-sparing diuresis in rodent models

  • UT inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias

Abstract

Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Schematic representation of the primary structures of mammalian UT-A isoforms.
Figure 2: Molecular structure of bovine UT-B.
Figure 3: Expression of the major mammalian UT isoforms in the kidney.
Figure 4: Assays of UT-mediated urea transport.
Figure 5: UTBinh-14 inhibition of UT-B.
Figure 6: Small-molecule inhibitors of UT-A.
Figure 7: UT inhibitor diuretic action in rodents.

Similar content being viewed by others

References

  1. Gamble, J. L., McKhann, C. F., Butler, A. M. & Tuthill, E. An economy of water in renal function referable to urea. Am. J. Physiol. 109, 139–154 (1934).

    CAS  Google Scholar 

  2. Aukland, K. Renal tubular permeability to urea with special reference to accumulation of urea in the renal medulla. Scand. J. Clin. Lab. Invest. 13, 646–660 (1961).

    CAS  PubMed  Google Scholar 

  3. Magnan De Bornier, B. Effect of urea on the permeability of the erythrocyte membrane [French]. Montp. Med. 53, 181–184 (1958).

    CAS  PubMed  Google Scholar 

  4. Mayrand, R. R. & Levitt, D. G. Urea and ethylene glycol-facilitated transport systems in the human red cell membrane. Saturation, competition, and asymmetry. J. Gen. Physiol. 81, 221–237 (1983).

    CAS  PubMed  Google Scholar 

  5. Gallucci, E., Micelli, S. & Lippe, C. Non-electrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochim. 79, 881–887 (1971).

    CAS  PubMed  Google Scholar 

  6. Macey, R. I. Transport of water and urea in red blood cells. Am. J. Physiol. 246, C195–C203 (1984).

    CAS  PubMed  Google Scholar 

  7. Schafer, J. A., Troutman, S. L. & Andreoli, T. E. Osmosis in cortical collecting tubules. ADH-independent osmotic flow rectification. J. Gen. Physiol. 64, 228–240 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sands, J. M. & Knepper, M. A. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J. Clin. Invest. 79, 138–147 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, R. B. & Verkman, A. S. Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am. J. Physiol. 260, C26–C34 (1991).

    CAS  PubMed  Google Scholar 

  10. You, G. et al. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365, 844–847 (1993).

    CAS  PubMed  Google Scholar 

  11. Fenton, R. A., Hewitt, J. E., Howorth, A., Cottingham, C. A. & Smith, C. P. The murine urea transporter genes Slc14a1 and Slc14a2 occur in tandem on chromosome 18. Cytogenet. Cell Genet. 87, 95–96 (1999).

    CAS  PubMed  Google Scholar 

  12. Olives, B. et al. Cloning and functional expression of a urea transporter from human bone marrow cells. J. Biol. Chem. 269, 31649–31652 (1994).

    CAS  PubMed  Google Scholar 

  13. Shayakul, C., Clémençon, B. & Hediger, M. A. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol. Aspects Med. 34, 313–322 (2013).

    CAS  PubMed  Google Scholar 

  14. Tickle, P., Thistlethwaite, A., Smith, C. P. & Stewart, G. S. Novel bUT-B2 urea transporter isoform is constitutively activated. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R323–R329 (2009).

    CAS  PubMed  Google Scholar 

  15. Stewart, G. S. et al. UT-B is expressed in bovine rumen: potential role in ruminal urea transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R605–R612 (2005).

    CAS  PubMed  Google Scholar 

  16. Nakayama, Y., Peng, T., Sands, J. M. & Bagnasco, S. M. The TonE/TonEBP pathway mediates tonicity-responsive regulation of UT-A urea transporter expression. J. Biol. Chem. 275, 38275–38280 (2000).

    CAS  PubMed  Google Scholar 

  17. Nakayama, Y. et al. Cloning of the rat Slc14a2 gene and genomic organization of the UT-A urea transporter. Biochim. Biophys. Acta 1518, 19–26 (2001).

    CAS  PubMed  Google Scholar 

  18. Fenton, R. A. et al. Structure and characterization of the mouse UT-A gene (Slc14a2). Am. J. Physiol. Renal Physiol. 282, F630–F638 (2002).

    CAS  PubMed  Google Scholar 

  19. Fenton, R. A. et al. Molecular characterization of a novel UT-A urea transporter isoform (UT-A5) in testis. Am. J. Physiol. Cell Physiol. 279, C1425–C1431 (2000).

    CAS  PubMed  Google Scholar 

  20. Smith, C. P. Mammalian urea transporters. Exp. Physiol. 94, 180–185 (2009).

    CAS  PubMed  Google Scholar 

  21. Smith, C. P., Potter, E. A., Fenton, R. A. & Stewart, G. S. Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. Am. J. Physiol. Cell Physiol. 287, C1087–C1093 (2004).

    CAS  PubMed  Google Scholar 

  22. Karakashian, A. et al. Cloning and characterization of two new isoforms of the rat kidney urea transporter: UT-A3 and UT-A4. J. Am. Soc. Nephrol. 10, 230–237 (1999).

    CAS  PubMed  Google Scholar 

  23. Smith, C. P. & Fenton, R. A. Genomic organization of the mammalian SLC14a2 urea transporter genes. J. Membr. Biol. 212, 109–117 (2006).

    CAS  PubMed  Google Scholar 

  24. Bankir, L. T. & Trinh-Trang-Tan, M. M. Renal urea transporters. Direct and indirect regulation by vasopressin. Exp. Physiol. 85, 243S–252S (2000).

    CAS  PubMed  Google Scholar 

  25. Levin, E. J., Quick, M. & Zhou, M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462, 757–761 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Levin, E. J. et al. Structure and permeation mechanism of a mammalian urea transporter. Proc. Natl Acad. Sci. USA 109, 11194–11199 (2012).

    CAS  PubMed  Google Scholar 

  27. Bradford, A. D. et al. 97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation. Am. J. Physiol. Renal Physiol. 281, F133–F143 (2001).

    CAS  PubMed  Google Scholar 

  28. Blount, M. A., Klein, J. D., Martin, C. F., Tchapyjnikov, D. & Sands, J. M. Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am. J. Physiol. Renal Physiol. 293, F1308–F1313 (2007).

    CAS  PubMed  Google Scholar 

  29. Minocha, R., Studley, K. & Saier, M. H. Jr. The urea transporter (UT) family: bioinformatic analyses leading to structural, functional, and evolutionary predictions. Receptors Channels 9, 345–352 (2003).

    CAS  PubMed  Google Scholar 

  30. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988).

    CAS  PubMed  Google Scholar 

  31. Lucien, N. et al. Antigenic and functional properties of the human red blood cell urea transporter hUT-B1. J. Biol. Chem. 277, 34101–34108 (2002).

    CAS  PubMed  Google Scholar 

  32. Shayakul, C. & Hediger, M. A. The SLC14 gene family of urea transporters. Pflugers Arch. 447, 603–609 (2004).

    CAS  PubMed  Google Scholar 

  33. Azouzi, S. et al. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B. PLoS One 8, e82338 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Yang, B. & Verkman, A. S. Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J. Biol. Chem. 273, 9369–9372 (1998).

    CAS  PubMed  Google Scholar 

  35. Yang, B. & Verkman, A. S. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J. Biol. Chem. 277, 36782–36786 (2002).

    CAS  PubMed  Google Scholar 

  36. Zhao, D., Sonawane, N. D., Levin, M. H. & Yang, B. Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim. Biophys. Acta 1768, 1815–1821 (2007).

    CAS  PubMed  Google Scholar 

  37. Stewart, G. S. et al. The basolateral expression of mUT-A3 in the mouse kidney. Am. J. Physiol. Renal Physiol. 286, F979–F987 (2004).

    CAS  PubMed  Google Scholar 

  38. Terris, J. M., Knepper, M. A. & Wade, J. B. UT-A3: localization and characterization of an additional urea transporter isoform in the IMCD. Am. J. Physiol. Renal Physiol. 280, F325–F332 (2001).

    CAS  PubMed  Google Scholar 

  39. Blessing, N. W., Blount, M. A., Sands, J. M., Martin, C. F. & Klein, J. D. Urea transporters UT-A1 and UT-A3 accumulate in the plasma membrane in response to increased hypertonicity. Am. J. Physiol. Renal Physiol. 295, F1336–F1341 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wade, J. B. et al. UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am. J. Physiol. Renal Physiol. 278, F52–F62 (2000).

    CAS  PubMed  Google Scholar 

  41. Timmer, R. T. et al. Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am. J. Physiol. Cell Physiol. 281, C1318–C1325 (2001).

    CAS  PubMed  Google Scholar 

  42. Xu, Y. et al. Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int. 51, 138–146 (1997).

    CAS  PubMed  Google Scholar 

  43. Doran, J. J. et al. Tissue distribution of UT-A and UT-B mRNA and protein in rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1446–R1459 (2006).

    CAS  PubMed  Google Scholar 

  44. Collins, D. et al. Differential protein abundance and function of UT-B urea transporters in human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G345–G351 (2010).

    CAS  PubMed  Google Scholar 

  45. Inoue, H. et al. Identification and characterization of a Kidd antigen/UT-B urea transporter expressed in human colon. Am. J. Physiol. Cell Physiol. 287, C30–C35 (2004).

    CAS  PubMed  Google Scholar 

  46. Wagner, L., Klein, J. D., Sands, J. M. & Baylis, C. Urea transporters are distributed in endothelial cells and mediate inhibition of L-arginine transport. Am. J. Physiol. Renal Physiol. 283, F578–F582 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsukaguchi, H. et al. Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J. Clin. Invest. 99, 1506–1515 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwun, Y. S. et al. Immunohistochemical localization of urea transporters A and B in the rat cochlea. Hear. Res. 183, 84–96 (2003).

    CAS  PubMed  Google Scholar 

  49. Duchesne, R. et al. UT-A urea transporter protein in heart: increased abundance during uremia, hypertension, and heart failure. Circ. Res. 89, 139–145 (2001).

    CAS  PubMed  Google Scholar 

  50. Fenton, R. A., Cooper, G. J., Morris, I. D. & Smith, C. P. Coordinated expression of UT-A and UT-B urea transporters in rat testis. Am. J. Physiol. Cell Physiol. 282, C1492–C1501 (2002).

    CAS  PubMed  Google Scholar 

  51. Klein, J. D., Timmer, R. T., Rouillard, P., Bailey, J. L. & Sands, J. M. UT-A urea transporter protein expressed in liver: upregulation by uremia. J. Am. Soc. Nephrol. 10, 2076–2083 (1999).

    CAS  PubMed  Google Scholar 

  52. Sands, J. M. Mammalian urea transporters. Annu. Rev. Physiol. 65, 543–566 (2003).

    CAS  PubMed  Google Scholar 

  53. Li, X. et al. Mice lacking urea transporter UT-B display depression-like behavior. J. Mol. Neurosci. 46, 362–372 (2012).

    CAS  PubMed  Google Scholar 

  54. Meng, Y. et al. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B. Sci. China C Life Sci. 52, 474–478 (2009).

    CAS  PubMed  Google Scholar 

  55. Yu, H. et al. Differential protein expression in heart in UT-B null mice with cardiac conduction defects. Proteomics 9, 504–511 (2009).

    CAS  PubMed  Google Scholar 

  56. Dong, Z. et al. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium. PLoS ONE 8, e76952 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, L. et al. Reduced urea flux across the blood-testis barrier and early maturation in the male reproductive system in UT-B-null mice. Am. J. Physiol. Cell Physiol. 293, C305–C312 (2007).

    CAS  PubMed  Google Scholar 

  58. Reif, M. C., Troutman, S. L. & Schafer, J. A. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 26, 725–732 (1984).

    CAS  PubMed  Google Scholar 

  59. Rocha, A. S. & Kudo, L. H. Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int. 22, 485–491 (1982).

    CAS  PubMed  Google Scholar 

  60. Wall, S. M., Han, J. S., Chou, C. L. & Knepper, M. A. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am. J. Physiol. 262, F989–F998 (1992).

    CAS  PubMed  Google Scholar 

  61. Chen, G., Fröhlich, O., Yang, Y., Klein, J. D. & Sands, J. M. Loss of N-linked glycosylation reduces urea transporter UT-A1 response to vasopressin. J. Biol. Chem. 281, 27436–27442 (2006).

    CAS  PubMed  Google Scholar 

  62. Klein, J. D. et al. Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. J. Am. Soc. Nephrol. 17, 2680–2686 (2006).

    CAS  PubMed  Google Scholar 

  63. Zhang, C., Sands, J. M. & Klein, J. D. Vasopressin rapidly increases phosphorylation of UT-A1 urea transporter in rat IMCDs through PKA. Am. J. Physiol. Renal Physiol. 282, F85–F90 (2002).

    CAS  PubMed  Google Scholar 

  64. Blount, M. A. et al. Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am. J. Physiol. Renal Physiol. 295, F295–F299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fenton, R. A. Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch. 458, 169–177 (2009).

    CAS  PubMed  Google Scholar 

  66. Hwang, S. et al. Vasopressin increases phosphorylation of Ser84 and Ser486 in Slc14a2 collecting duct urea transporters. Am. J. Physiol. Renal Physiol. 299, F559–F567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y., Klein, J. D., Liedtke, C. M. & Sands, J. M. Protein kinase C regulates urea permeability in the rat inner medullary collecting duct. Am. J. Physiol. Renal Physiol. 299, F1401–F1406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y., Klein, J. D., Froehlich, O. & Sands, J. M. Role of protein kinase C-α in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts. Am. J. Physiol. Renal Physiol. 304, F233–F238 (2013).

    CAS  PubMed  Google Scholar 

  69. Chen, G. New advances in urea transporter UT-A1 membrane trafficking. Int. J. Mol. Sci. 14, 10674–10682 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Su, H., Chen, M., Sands, J. M. & Chen, G. Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation. Am. J. Physiol. Renal Physiol. 305, F1775–F1782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sachs, G., Kraut, J. A., Wen, Y., Feng, J. & Scott, D. R. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J. Membr. Biol. 212, 71–82 (2006).

    CAS  PubMed  Google Scholar 

  72. Sebbane, F. et al. The Yersinia pseudotuberculosis Yut protein, a new type of urea transporter homologous to eukaryotic channels and functionally interchangeable in vitro with the Helicobacter pylori UreI protein. Mol. Microbiol. 45, 1165–1174 (2002).

    CAS  PubMed  Google Scholar 

  73. Gray, L. R., Gu, S. X., Quick, M. & Khademi, S. Transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori. Biochemistry 50, 8656–8663 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, L. H., Ludewig, U., Gassert, B., Frommer, W. B. & von Wirén, N. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133, 1220–1228 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, L. H., Ludewig, U., Frommer, W. B. & von Wirén, N. AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15, 790–800 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McDonald, M. D., Smith, C. P. & Walsh, P. J. The physiology and evolution of urea transport in fishes. J. Membr. Biol. 212, 93–107 (2006).

    CAS  PubMed  Google Scholar 

  77. Weihrauch, D., Wilkie, M. P. & Walsh, P. J. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 212, 1716–1730 (2009).

    CAS  PubMed  Google Scholar 

  78. Hediger, M. A. et al. Structure, regulation and physiological roles of urea transporters. Kidney Int. 49, 1615–1623 (1996).

    CAS  PubMed  Google Scholar 

  79. Mistry, A. C. et al. A novel type of urea transporter, UT-C, is highly expressed in proximal tubule of seawater eel kidney. Am. J. Physiol. Renal Physiol. 288, F455–F465 (2005).

    CAS  PubMed  Google Scholar 

  80. Pannabecker, T. L. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R488–R503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sands, J. M. Critical role of urea in the urine-concentrating mechanism. J. Am. Soc. Nephrol. 18, 670–671 (2007).

    CAS  PubMed  Google Scholar 

  82. Sands, J. M. & Layton, H. E. The physiology of urinary concentration: an update. Semin. Nephrol. 29, 178–195 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sands, J. M. & Layton, H. E. Advances in understanding the urine-concentrating mechanism. Annu. Rev. Physiol. 76, 387–409 (2014).

    CAS  PubMed  Google Scholar 

  84. Yang, B., Bankir, L., Gillespie, A., Epstein, C. J. & Verkman, A. S. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J. Biol. Chem. 277, 10633–10637 (2002).

    CAS  PubMed  Google Scholar 

  85. Lei, T. et al. Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism. Am. J. Physiol. Renal Physiol. 301, F1251–F1259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fenton, R. A., Chou, C. L., Stewart, G. S., Smith, C. P. & Knepper, M. A. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc. Natl Acad. Sci. USA 101, 7469–7474 (2004).

    CAS  PubMed  Google Scholar 

  87. Klein, J. D. et al. Transgenic mice expressing UT-A1, but lacking UT-A3, have intact urine concentrating ability. FASEB J. 27 (Meeting Abstract Suppl.), 1111.17 (2013).

    Google Scholar 

  88. Uchida, S. et al. Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol. Cell. Biol. 25, 7357–7363 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Klein, J. D., Sands, J. M., Qian, L., Wang, X. & Yang, B. Upregulation of urea transporter UT-A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT-B. J. Am. Soc. Nephrol. 15, 1161–1167 (2004).

    CAS  PubMed  Google Scholar 

  90. Fenton, R. A. et al. Renal phenotype of UT-A urea transporter knockout mice. J. Am. Soc. Nephrol. 16, 1583–1592 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lucien, N. et al. Characterization of the gene encoding the human Kidd blood group/urea transporter protein. Evidence for splice site mutations in Jknull individuals. J. Biol. Chem. 273, 12973–12980 (1998).

    CAS  PubMed  Google Scholar 

  92. Sands, J. M., Gargus, J. J., Fröhlich, O., Gunn, R. B. & Kokko, J. P. Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J. Am. Soc. Nephrol. 2, 1689–1696 (1992).

    CAS  PubMed  Google Scholar 

  93. Garcia-Closas, M. et al. A genome-wide association study of bladder cancer identifies a new susceptibility locus within SLC14A1, a urea transporter gene on chromosome 18q12.3. Hum. Mol. Genet. 20, 4282–4289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Koutros, S. et al. Genetic susceptibility loci, pesticide exposure and prostate cancer risk. PLoS ONE 8, e58195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rafnar, T. et al. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene. Hum. Mol. Genet. 20, 4268–4281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ranade, K. et al. Genetic variation in the human urea transporter-2 is associated with variation in blood pressure. Hum. Mol. Genet. 10, 2157–2164 (2001).

    CAS  PubMed  Google Scholar 

  97. Tsai, H. J. et al. Genetic variants of human urea transporter-2 are associated with metabolic syndrome in Asian population. Clin. Chim. Acta 411, 2009–2013 (2010).

    CAS  PubMed  Google Scholar 

  98. Levin, M. H., de la Fuente, R. & Verkman, A. S. Urearetics: a small molecule screen yields nanomolar potency inhibitors of urea transporter UT-B. FASEB J. 21, 551–563 (2007).

    CAS  PubMed  Google Scholar 

  99. Shpun, S. & Katz, U. Urea transport across urinary bladder and salt acclimation in toad (Bufo viridis). Am. J. Physiol. 258, R883–R888 (1990).

    CAS  PubMed  Google Scholar 

  100. Levitt, D. G. & Mlekoday, H. J. Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane. J. Gen. Physiol. 81, 239–253 (1983).

    CAS  PubMed  Google Scholar 

  101. Verkman, A. S., Anderson, M. O. & Papadopoulos, M. C. Aquaporins: important but elusive drug targets. Nat. Rev. Drug Discov. 13, 259–277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Esteva-Font, C., Phuan, P. W., Anderson, M. O. & Verkman, A. S. A small molecule screen identifies selective inhibitors of urea transporter UT-A. Chem. Biol. 20, 1235–1244 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Baumgart, F., Rossi, A. & Verkman, A. S. Light inactivation of water transport and protein–protein interactions of aquaporin–Killer Red chimeras. J. Gen. Physiol. 139, 83–91 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yao, C. et al. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration. J. Am. Soc. Nephrol. 23, 1210–1220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Anderson, M. O. et al. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B. J. Med. Chem. 55, 5942–5950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Esteva-Font, C. et al. Diuresis and reduced urinary osmolality in rats produced by small-molecule UT-A-selective urea transport inhibitors. FASEB J. 28, 3878–3890 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Esteva-Font, C. et al. Nanomolar-potency, UT-A-selective inhibitors of kidney tubule urea transporters produce salt-sparing diuresis in rats (American Society of Nephrology abstract in press).

  108. Li, F. et al. A novel small-molecule thienoquinolin urea transporter inhibitor acts as a potential diuretic. Kidney Int. 83, 1076–1086 (2013).

    CAS  PubMed  Google Scholar 

  109. Cil, O., Ertunc, M. & Onur, R. The diuretic effect of urea analog dimethylthiourea in female Wistar rats. Hum. Exp. Toxicol. 31, 1050–1055 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.O.A. and A.S.V. are funded by the National Institutes of Health, and A.S.V. is also funded by the Guthy–Jackson Charitable Foundation and the Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.E.-F., M.O.A. and A.S.V. researched data for the article, provided substantial contributions to discussions of content, and wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alan S. Verkman.

Ethics declarations

Competing interests

C.E.-F., M.O.A. and A.S.V. declare that they are named inventors on patent applications for urea transporter screening methods and small-molecule urea transporter inhibitors. Patent rights are assigned to the authors' respective institutions, and patents have not yet been licensed.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteva-Font, C., Anderson, M. & Verkman, A. Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 11, 113–123 (2015). https://doi.org/10.1038/nrneph.2014.219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.219

  • Springer Nature Limited

This article is cited by

Navigation