Skip to main content

Advertisement

Log in

New insights into mononuclear phagocyte biology from the visual system

  • Review Article
  • Published:

From Nature Reviews Immunology

View current issue Sign up to alerts

Key Points

  • Pathological lymphangiogenesis of the adult cornea is associated with breach of corneal immune privilege and can allow cells of the mononuclear phagocyte system (MPS) to trigger T cell responses.

  • Severing corneal nerves in one eye causes a breach in corneal immune privilege in both eyes, suggesting the presence of a neuro-immune reflex that may involve MPS cells.

  • Commensals in the gut, and perhaps gut MPS cells, are capable of triggering T cells that cause autoimmune responses in the immune privileged retina.

  • Microglia have a key role in shaping healthy synapses in the visual system, but these cells may also contribute to retinal ganglion cell dysfunction in glaucoma.

  • Microglia and monocyte-derived cells are both present in the retina in a model of photoreceptor degeneration and these distinct MPS lineages have phenotypic differences, as confirmed in CX3CR1Cre reporter systems.

  • Early studies using such CX3CR1Cre systems suggest that functional specializations of microglia versus monocyte-derived cells accounts for their distinct roles in photoreceptor degenerative diseases.

Abstract

Major advances in mononuclear phagocyte biology have been made but key questions pertinent to their roles in health and disease remain, including in the visual system. One problem concerns how dendritic cells can trigger immune responses from certain tightly regulated immune- privileged sites of the eye. Another, albeit separate, problem involves whether there are functional specializations for microglia versus monocytes in retinal neurodegeneration. In this Review, we examine novel insights in eye immune privilege and, separately, we discuss recent inroads concerning retinal degeneration. Both themes have been extensively studied in the visual system and show parallels with recent findings concerning mononuclear phagocytes in the central nervous system and in the periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Immune-privileged sites of the eye.
Figure 2: Pauci-lymphatic state and corneal immune privilege.
Figure 3: Putative neural response in bilateral breach of corneal immune privilege.
Figure 4: Visual circuit and cell types in the retina.
Figure 5: Definitive discrimination of microglia and blood monocytes.

Similar content being viewed by others

References

  1. Ginhoux, F., Guilliams, M. & Naik, S. H. Editorial: dendritic cell and macrophage nomenclature and classification. Front. Immunol. 7, 168 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geissmann, F., Gordon, S., Hume, D. A., Mowat, A. M. & Randolph, G. J. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10, 453–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mildner, A., Yona, S. & Jung, S. A close encounter of the third kind: monocyte-derived cells. Adv. Immunol. 120, 69–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). This study shows that yolk sac macrophages in utero give rise to microglia in the adult setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Hoeffel, G. et al. C-MYB+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via PU.1- and IRF8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Shemer, A. & Jung, S. Differential roles of resident microglia and infiltrating monocytes in murine CNS autoimmunity. Semin. Immunopathol. 37, 613–623 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Ginhoux, F. & Prinz, M. Origin of microglia: current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 7, a020537 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Streilein, J. W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889 (2003). This review covers tolerogenic immune networks that have a central role in ocular immune privilege and anterior-associated immune deviation.

    Article  CAS  PubMed  Google Scholar 

  12. Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271, 1723–1726 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Fijak, M. & Meinhardt, A. The testis in immune privilege. Immunol. Rev. 213, 66–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Forrester, J. V., Xu, H., Lambe, T. & Cornall, R. Immune privilege or privileged immunity? Mucosal Immunol. 1, 372–381 (2008). This review covers our recent understanding of immune privilege and the different mechanisms that support this setting in various organ systems.

    Article  CAS  PubMed  Google Scholar 

  15. Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Mellor, A. L. & Munn, D. H. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 8, 74–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Niederkorn, J. Y. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat. Immunol. 7, 354–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Combadiere, C. et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J. Clin. Invest. 117, 2920–2928 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mo, J. S. et al. By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J. Exp. Med. 197, 1335–1344 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benhar, I., London, A. & Schwartz, M. The privileged immunity of immune privileged organs: the case of the eye. Front. Immunol. 3, 296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Housset, M. & Sennlaub, F. Thrombospondin-1 and pathogenesis of age-related macular degeneration. J. Ocul. Pharmacol. Ther. 31, 406–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Perez, V. L. & Caspi, R. R. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 36, 354–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zamiri, P., Sugita, S. & Streilein, J. W. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem. Immunol. Allergy 92, 86–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Schulz, C. et al. A lineage of myeloid cells independent of MYB and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Caspi, R. R. Ocular autoimmunity: the price of privilege? Immunol. Rev. 213, 23–35 (2006).

    Article  PubMed  Google Scholar 

  29. Saban, D. R. The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul. Surf. 12, 87–99 (2014).

    Article  PubMed  Google Scholar 

  30. Forrester, J. V., Xu, H., Kuffova, L., Dick, A. D. & McMenamin, P. G. Dendritic cell physiology and function in the eye. Immunol. Rev. 234, 282–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Lucas, K., Karamichos, D., Mathew, R., Zieske, J. D. & Stein-Streilein, J. Retinal laser burn-induced neuropathy leads to substance P-dependent loss of ocular immune privilege. J. Immunol. 189, 1237–1242 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Tilney, N. L. Patterns of lymphatic drainage in the adult laboratory rat. J. Anat. 109, 369–383 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Louveau, A. et al. Corrigendum: structural and functional features of central nervous system lymphatic vessels. Nature 533, 278 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Camelo, S., Kezic, J., Shanley, A., Rigby, P. & McMenamin, P. G. Antigen from the anterior chamber of the eye travels in a soluble form to secondary lymphoid organs via lymphatic and vascular routes. Invest. Ophthalmol. Vis. Sci. 47, 1039–1046 (2006).

    Article  PubMed  Google Scholar 

  36. Erlebacher, A., Vencato, D., Price, K. A., Zhang, D. & Glimcher, L. H. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Invest. 117, 1399–1411 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Collin, H. B. Lymphatic drainage of 131-I-albumin from the vascularized cornea. Invest. Ophthalmol. 9, 146–155 (1970). This original study characterizes the kinetics of antigen drainage to the lymphatics from the pauci-lymphatic cornea.

    CAS  PubMed  Google Scholar 

  39. Billingham, R. E. & Boswell, T. Studies on the problem of corneal homografts. Proc. R. Soc. Lond. B 141, 392–406 (1953).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, J. H., Gabison, E. E., Kato, T. & Azar, D. T. Corneal neovascularization. Curr. Opin. Ophthalmol. 12, 242–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Wong, H. L. et al. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat. Commun. 7, 10824 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cursiefen, C. et al. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J. Exp. Med. 208, 1083–1092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seo, S. et al. Forkhead box transcription factor FOXC1 preserves corneal transparency by regulating vascular growth. Proc. Natl Acad. Sci. USA 109, 2015–2020 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Albuquerque, R. J. et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med. 15, 1023–1030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh, N. et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood 121, 4242–4249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H. S. et al. Involvement of corneal lymphangiogenesis in a mouse model of allergic eye disease. Invest. Ophthalmol. Vis. Sci. 56, 3140–3148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ahadome, S. D. et al. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy. JCI Insight 1, e87012 (2016).

    PubMed Central  Google Scholar 

  48. Cursiefen, C. et al. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. Invest. Ophthalmol. Vis. Sci. 43, 2127–2135 (2002).

    PubMed  Google Scholar 

  49. Wuest, T. R. & Carr, D. J. VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. J. Exp. Med. 207, 101–115 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chauhan, S. K. et al. A novel pro-lymphangiogenic function for TH17/IL-17. Blood 118, 4630–4634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, W. S. et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat. Commun. 7, 11302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bock, F. et al. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog. Retin. Eye Res. 34, 89–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Maruyama, K. et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, L. et al. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat. Med. 10, 813–815 (2004). This study shows that antigen-presenting cells from the cornea migrate to the draining lymph node.

    Article  CAS  PubMed  Google Scholar 

  57. Hamrah, P., Liu, Y., Zhang, Q. & Dana, M. R. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch. Ophthalmol. 121, 1132–1140 (2003).

    Article  PubMed  Google Scholar 

  58. Saban, D. R., Bock, F., Chauhan, S. K., Masli, S. & Dana, R. Thrombospondin-1 derived from APCs regulates their capacity for allosensitization. J. Immunol. 185, 4691–4697 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Pajoohesh-Ganji, A. et al. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab. Invest. 95, 1305–1318 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dietrich, T. et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J. Immunol. 184, 535–539 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Dana, M. R. & Streilein, J. W. Loss and restoration of immune privilege in eyes with corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 37, 2485–2494 (1996).

    CAS  PubMed  Google Scholar 

  62. Chen, Y., Chauhan, S. K., Lee, H. S., Saban, D. R. & Dana, R. Chronic dry eye disease is principally mediated by effector memory TH17 cells. Mucosal Immunol. 7, 38–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Gandhi, N. B. et al. Dendritic cell-derived thrombospondin-1 is critical for the generation of the ocular surface TH17 response to desiccating stress. J. Leukoc. Biol. 94, 1293–1301 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhang, X. et al. CD8+ cells regulate the T helper 17 response in an experimental murine model of Sjogren syndrome. Mucosal Immunol. 7, 417–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Schlereth, S., Lee, H. S., Khandelwal, P. & Saban, D. R. Blocking CCR7 at the ocular surface impairs the pathogenic contribution of dendritic cells in allergic conjunctivitis. Am. J. Pathol. 180, 2351–2360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hos, D. et al. Blockade of CCR7 leads to decreased dendritic cell migration to draining lymph nodes and promotes graft survival in low-risk corneal transplantation. Exp. Res. 146, 1–6 (2016).

    CAS  Google Scholar 

  67. Hua, J. et al. Graft site microenvironment determines dendritic cell trafficking through the CCR7–CCL19/21 axis. Invest. Ophthalmol. Vis. Sci. 57, 1457–1467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kodati, S. et al. CCR7 is critical for the induction and maintenance of TH17 immunity in dry eye disease. Invest. Ophthalmol. Vis. Sci. 55, 5871–5877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dang, Z., Kuffova, L., Liu, L. & Forrester, J. V. Soluble antigen traffics rapidly and selectively from the corneal surface to the eye draining lymph node and activates T cells when codelivered with CpG oligonucleotides. J. Leukoc. Biol. 95, 431–440 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Taylor, A. W., Streilein, J. W. & Cousins, S. W. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J. Immunol. 153, 1080–1086 (1994).

    CAS  PubMed  Google Scholar 

  71. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Gabanyi, I. et al. Neuro–immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paunicka, K. J. et al. Severing corneal nerves in one eye induces sympathetic loss of immune privilege and promotes rejection of future corneal allografts placed in either eye. Am. J. Transplant. 15, 1490–1501 (2015). This study shows that severing corneal nerves in a certain manner in one eye leads to a bilateral breach in corneal immune privilege.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Niederkorn, J. Y. Cornea: window to ocular immunology. Curr. Immunol. Rev. 7, 328–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Niederkorn, J. Y. & Larkin, D. F. Immune privilege of corneal allografts. Ocul. Immunol. Inflamm. 18, 162–171 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lucas, L., Karamichos, D., Mathew, R., Zieske, J. D. & Stein-Streilein, J. Retinal laser burn-induced neuropathy leads to substance P-dependent loss of ocular immune privilege. J. Immunol. 189, 1237–1242 (2009).

    Article  CAS  Google Scholar 

  78. Forrester, J. V. & Xu, H. Good news-bad news: the Yin and Yang of immune privilege in the eye. Front. Immunol. 3, 338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pavlov, V. A. & Tracey, K. J. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20, 156–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Blanco, T. & Saban, D. R. The cornea has “the nerve” to encourage immune rejection. Am. J. Transplant. 15, 1453–1454 (2015). This review covers the neuro-immune reflex responses in health and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao, N., Yan, C., Lee, P., Sun, H. & Yu, F. S. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J. Clin. Invest. 126, 1998–2011 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Seyed-Razavi, Y., Chinnery, H. R. & McMenamin, P. G. A novel association between resident tissue macrophages and nerves in the peripheral stroma of the murine cornea. Invest. Ophthalmol. Vis. Sci. 55, 1313–1320 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Clarke, D. W. & Niederkorn, J. Y. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol. 22, 175–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Cruzat, A. et al. Contralateral clinically unaffected eyes of patients with unilateral infectious keratitis demonstrate a sympathetic immune response. Invest. Ophthalmol. Vis. Sci. 56, 6612–6620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kugadas, A. & Gadjeva, M. Impact of microbiome on ocular health. Ocul. Surf. 14, 342–349 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Evaldson, G., Heimdahl, A., Kager, L. & Nord, C. E. The normal human anaerobic microflora. Scand. J. Infect. Dis. Suppl. 35, 9–15 (1982).

    CAS  PubMed  Google Scholar 

  91. Larkin, D. F. & Leeming, J. P. Quantitative alterations of the commensal eye bacteria in contact lens wear. Eye (Lond.) 5, 70–74 (1991).

    Article  Google Scholar 

  92. Horai, R. et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015). This study shows that gut commensals result in T cell autoreactivity that cause experimental autoimmune uveitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4615–4622 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Moser, B. & Brandes, M. Gammadelta T cells: an alternative type of professional APC. Trends Immunol. 27, 112–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Erny, D., Hrabe de Angelis, A. L. & Prinz, M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology 150, 7–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Biber, K., Moller, T., Boddeke, E. & Prinz, M. Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat. Rev. Drug Discov. 15, 110–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 8, e1000527 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This study shows the role of C1q in synaptic pruning in development and axonal neurodegeneration in the visual system of DBA/2J mice.

    Article  CAS  PubMed  Google Scholar 

  105. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012). This study shows the role of microglia in C1q-mediated pruning of synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Anderson, M. G. et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat. Genet. 30, 81–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Howell, G. R. et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121, 1429–1444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016). This study shows that microglia-mediated elimination of synapses is involved in the pathogenesis of Alzheimer disease in mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vasek, M. J. et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Toomey, C. B., Kelly, U., Saban, D. R. & Bowes Rickman, C. Regulation of age-related macular degeneration-like pathology by complement factor H. Proc. Natl Acad. Sci. USA 112, E3040–E3049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ding, J. D. et al. The role of complement dysregulation in AMD mouse models. Adv. Exp. Med. Biol. 801, 213–219 (2014).

    Article  PubMed  Google Scholar 

  113. London, A. et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208, 23–39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Caicedo, A., Espinosa-Heidmann, D. G., Pina, Y., Hernandez, E. P. & Cousins, S. W. Blood-derived macrophages infiltrate the retina and activate Muller glial cells under experimental choroidal neovascularization. Exp. Res. 81, 38–47 (2005).

    CAS  Google Scholar 

  119. O'Koren, E. G., Mathew, R. & Saban, D. R. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci. Rep. 6, 20636 (2016). This study shows that microglia and monocyte-derived macrophages are both present in a retinal degeneration model and are characterized their phenotypic differences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sennlaub, F. et al. CCR2+ monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in CX3CR1 deficient mice. EMBO Mol. Med. 5, 1775–1793 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, H., Chen, M., Mayer, E. J., Forrester, J. V. & Dick, A. D. Turnover of resident retinal microglia in the normal adult mouse. Glia 55, 1189–1198 (2007).

    Article  PubMed  Google Scholar 

  122. Mildner, A. et al. Microglia in the adult brain arise from LY6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Sedgwick, J. D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl Acad. Sci. USA 88, 7438–7442 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dick, A. D., Ford, A. L., Forrester, J. V. & Sedgwick, J. D. Flow cytometric identification of a minority population of MHC class II-positive cells in the normal rat retina distinct from CD45lowCD11b/c+CD4low parenchymal microglia. Br. J. Ophthalmol. 79, 834–840 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Luckoff, A. et al. Interferon-β signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Mol. Med. 8, 670–678 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Pharmacological Therapy for Macular Degeneration Study Group. Interferon-α2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial. Arch. Ophthalmol. 115, 865–872 (1997).

  128. Zhao, L. et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7, 1179–1197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo, C. et al. Knockout of CCR2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Exp. Res. 104, 39–47 (2012).

    CAS  Google Scholar 

  130. Eandi, C. M. et al. Subretinal mononuclear phagocytes induce cone segment loss via IL-1β. eLife 5, e16490 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Xi, H. et al. IL-33 amplifies an innate immune response in the degenerating retina. J. Exp. Med. 213, 189–207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Theodoropoulou, S. et al. Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. J. Pathol. 241, 45–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Gadani, S. P., Walsh, J. T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85, 703–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Amit, I., Winter, D. R. & Jung, S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat. Immunol. 17, 18–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaur, G., Mital, P. & Dufour, J. M. Testisimmune privilege — assumptions versus facts. Anim. Reprod. 10, 3–15 (2013).

    CAS  PubMed  Google Scholar 

  140. Streilein, J. W. & Niederkorn, J. Y. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J. Exp. Med. 153, 1058–1067 (1981).

    Article  CAS  PubMed  Google Scholar 

  141. Lin, H. H. et al. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J. Exp. Med. 201, 1615–1625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Streilein, J. W. & Stein-Streilein, J. Does innate immune privilege exist? J. Leukoc. Biol. 67, 479–487 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the US National Institutes of Health (R01 to D.R.S. and F32 to N.J.R.) and Research to Prevent Blindness (to D.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Saban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, N., O'Koren, E. & Saban, D. New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol 17, 322–332 (2017). https://doi.org/10.1038/nri.2017.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.13

  • Springer Nature Limited

This article is cited by

Navigation