Skip to main content

Advertisement

Log in

Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

This protocol describes how to convert the chromatin structure of sheep and mouse somatic cells into spermatid-like nuclei through the heterologous expression of the protamine 1 gene (Prm1). Furthermore, we also provide step-by-step instructions for somatic cell nuclear transfer (SCNT) of Prm1-remodeled somatic nuclei in sheep oocytes. There is evidence that changing the organization of a somatic cell nucleus with that which mirrors the spermatozoon nucleus leads to better nuclear reprogramming. The protocol may have further potential application in determining the protamine and histone footprints of the whole genome; obtaining 'gametes' from somatic cells; and furthering understanding of the molecular mechanisms regulating the maintenance of DNA methylation in imprinted control regions during male gametogenesis. The protocol is straightforward, and it requires 4 weeks from the establishment of the cell lines to their transfection and the production of cloned blastocysts. It is necessary for researchers to have experience in cell biology and embryology, with basic skills in molecular biology, to carry out the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Protaminized adult fibroblasts in sheep and mouse.
Figure 2: Schematic diagram of the protaminization of somatic cell nuclei, isolation and use of donors for the somatic cell nuclear transfer (SCNT) procedure.
Figure 3: Visualization of protaminized nuclei of fresh somatic cells using a Nikon Eclipse TE 300 fluorescence microscope.
Figure 4: Piezo micro-tool fabrication.
Figure 5: Suggested layout of droplets in the manipulation chambers of the 10-cm dish.
Figure 6: Primary cells isolated from adult ear tissue.
Figure 7: Visualization of protaminized nuclei of fixed somatic cells under a fluorescence microscope.
Figure 8: Fully protaminized somatic nucleus ideal for nuclear transfer (NT).
Figure 9: Microscopy images of sheep oocytes.
Figure 10: Enucleation of sheep oocytes and injection of protaminized somatic nucleus using the Piezo unit.
Figure 11: Gradual protamine incorporation into the somatic nucleus.
Figure 12: Photographic (top) and schematic (bottom) representation of spermatic and protaminized nuclei.

Similar content being viewed by others

References

  1. Gurdon, J.B. et al. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

    CAS  Google Scholar 

  2. Wilmut, I. et al. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  Google Scholar 

  3. Loi, P., Iuso, D., Czernik, M. & Ogura, A. A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol. Apr 22. pii: S0167-7799(16)30003-8 (2016).

  4. Ogura, A. et al. Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110329 (2013).

    Article  Google Scholar 

  5. Inoue, K. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010).

    Article  CAS  Google Scholar 

  6. Kishigami, S. et al. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–189 (2006).

    Article  CAS  Google Scholar 

  7. Matoba, S. et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895 (2014).

    Article  CAS  Google Scholar 

  8. Hosseini, S.M. et al. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics 4, 16 (2016).

    Article  Google Scholar 

  9. Cibelli, J. et al. (eds). Principles 2nd edn. (Academic Press, Elsevier), (2013).

  10. Rathke, C. et al. Chromatin dynamics during spermiogenesis. Biochim. Biophys. Acta 1839, 155–168 (2014).

    Article  CAS  Google Scholar 

  11. Gaucher, J. et al. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 277, 599–604 (2010).

    Article  CAS  Google Scholar 

  12. Goudarzi, A. et al. Genome-scale acetylation-dependent histone eviction during spermatogenesis. J. Mol. Biol. 426, 3342–3349 (2014).

    Article  CAS  Google Scholar 

  13. Singh, J. & Rao, M.R. Interaction of rat testis protein TP, with nucleosome core particle. Biochem. Int. 17, 701–710 (1988).

    CAS  PubMed  Google Scholar 

  14. Johnson, G.D. et al. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 14, 21–36 (2011).

    Article  Google Scholar 

  15. De Vries, M. et al. Chromatin remodelling initiation during human spermiogenesis. Biol. Open. 1, 446–457 (2012).

    Article  CAS  Google Scholar 

  16. Palmer, D.K., O'Day, K. & Margolis, R.L. The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100, 32–36 (1990).

    Article  CAS  Google Scholar 

  17. Hammoud, S.S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  Google Scholar 

  18. Saitou, M. & Kurimoto, K. Paternal nucleosomes: are they retained in developmental promoters or gene deserts? Dev. Cell 30, 6–8 (2014).

    Article  CAS  Google Scholar 

  19. Samans, B. et al. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Dev. Cell 30, 23–35 (2014).

    Article  CAS  Google Scholar 

  20. Van der Heijden, G.W. et al. Asymmetry in histone H3 variants and lysine methylationbetween paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 122, 1008–1022 (2005).

    Article  CAS  Google Scholar 

  21. Wu, F. et al. Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J. Reprod. Dev. 54, 413–417 (2008).

    Article  CAS  Google Scholar 

  22. Loppin, B. et al. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386–1390 (2005).

    Article  CAS  Google Scholar 

  23. Okuwaki, M. et al. Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodelling. Nucleic Acids Res. 40, 4861–4878 (2012).

    Article  CAS  Google Scholar 

  24. Loi, P. et al. Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 65, 1110–1121 (2006).

    Article  Google Scholar 

  25. Martínez-Soler, F., Kurtz, K., Ausió, J. & Chiva, M. Transition of nuclear proteins and chromatin structure in spermiogenesis of Sepia officinalis. Mol. Reprod. Dev. 74, 360–370 (2007).

    Article  Google Scholar 

  26. Miller, D., Brinkworth, M. & Iles, D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139, 287–301 (2010).

    Article  CAS  Google Scholar 

  27. De Mateo, S. et al. Protamine 2 precursors and processing. Protein Pept. Lett. 18, 778–785 (2011).

    Article  CAS  Google Scholar 

  28. Iuso, D. et al. Exogenous expression of human protamine 1 (hPrm1) remodels fibroblast nuclei into spermatid-like structures. Cell Rep. 13, 1765–1771 (2015).

    Article  CAS  Google Scholar 

  29. Pivot-Pajot, C. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol. Cell. Biol. 23, 5354–5365 (2003).

    Article  CAS  Google Scholar 

  30. Barckmann, B. & Simonelig, M. Control of maternal mRNA stability in germ cells and early embryos. Biochim. Biophys. Acta 1829, 714–724 (2013).

    Article  CAS  Google Scholar 

  31. Loi, P. et al. Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod. 67, 126–132 (2002).

    Article  CAS  Google Scholar 

  32. Iuso, D. et al. A simplified approach for oocyte enucleation in mammalian cloning. Cell. Reprogram. 15, 490–494 (2013).

    Article  CAS  Google Scholar 

  33. Wakayama, T. & Yanagimachi, R. Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58, 376–383 (2001).

    Article  CAS  Google Scholar 

  34. Miyamoto, K. et al. Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. J. Reprod. Dev. 53, 237–246 (2007).

    Article  CAS  Google Scholar 

  35. Wilmut, I. et al. Somatic cell nuclear transfer. Nature 10, 583–586 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grant MIUR/CNR, Program FIRB GA B81J12002520001 (GenHome), and the European Union's Horizon2020 Project "ERAofART" (GA 692185), to P.L. The authors are participating in the COST action FA 1201 'Epiconcept' Epigenetic and Peri-conception Environment. The authors warmly acknowledge L. Palazzese for help with the photos. The authors acknowledge FlowMetric Europe SpA (Italy), an affiliate company of FlowMetric (USA), for cell sorting.

Author information

Authors and Affiliations

Authors

Contributions

M.C., D.I., P.T., S.K. and P.L. contributed to the development of the methodology and to the description of the protocol; M.C. and D.I. performed the experiments and prepared the figures. M.C., D.I., S.K. and P.L. wrote the manuscript.

Corresponding author

Correspondence to Pasqualino Loi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czernik, M., Iuso, D., Toschi, P. et al. Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nat Protoc 11, 2170–2188 (2016). https://doi.org/10.1038/nprot.2016.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.130

  • Springer Nature Limited

This article is cited by

Navigation