Skip to main content
Log in

Ultrafast non-local control of spontaneous emission

  • Letter
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

The radiative interaction of solid-state emitters with cavity fields is the basis of semiconductor microcavity lasers and cavity quantum electrodynamics (CQED) systems1. Its control in real time would open new avenues for the generation of non-classical light states, the control of entanglement and the modulation of lasers. However, unlike atomic CQED or circuit quantum electrodynamics2,3,4,5,6, the real-time control of radiative processes has not yet been achieved in semiconductors because of the ultrafast timescales involved. Here we propose an ultrafast non-local moulding of the vacuum field in a coupled-cavity system as an approach to the control of radiative processes and demonstrate the dynamic control of the spontaneous emission (SE) of quantum dots (QDs) in a photonic crystal (PhC) cavity on a ∼200 ps timescale, much faster than their natural SE lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Scheme of the non-local control of the emitter–cavity interaction.
Figure 2: Quasi-static modulation of the Q factor and SE rate.
Figure 3: Dynamic control of SE at the target cavity.
Figure 4: Dynamic modulation of the SE decay curves at the target cavity.

Similar content being viewed by others

References

  1. Shields, A. J. Semiconductor quantum light sources. Nature Photon 1, 215–223 (2007).

    Article  CAS  Google Scholar 

  2. Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article  Google Scholar 

  3. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  CAS  Google Scholar 

  4. Parkins, A. S., Marte, P. & Zoller, P. Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett. 71, 3095–3098 (1993).

    Article  CAS  Google Scholar 

  5. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  Google Scholar 

  6. Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    Article  Google Scholar 

  7. Faraon, A., Majumdar, A., Kim, H., Petroff, P. & Vučković, J. Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity. Phys. Rev. Lett. 104, 047402 (2010).

    Article  Google Scholar 

  8. Trotta, R. et al. Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators. Adv. Mater. 24, 2668–2672 (2012).

    Article  CAS  Google Scholar 

  9. Fuhrmann, D. A. et al. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photon. 5, 605–609 (2011).

    Article  CAS  Google Scholar 

  10. Midolo, L., van Veldhoven, P. J., Dündar, M. A., Nötzel, R. & Fiore, A. Electromechanical wavelength tuning of double-membrane photonic crystal cavities. Appl. Phys. Lett. 98, 211120 (2011).

    Article  Google Scholar 

  11. Johnson, P. M., Koenderink, A. F. & Vos, W. L. Ultrafast switching of photonic density of states in photonic crystals. Phys. Rev. B 66, 081102 (2002).

    Article  Google Scholar 

  12. Thyrrestrup, H., Hartsuiker, A., Gérard, J-M. & Vos, W. L. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Opt. Express 21, 23130 (2013).

    Article  Google Scholar 

  13. Tanaka, Y. et al. Dynamic control of the Q-factor in a photonic crystal nanocavity. Nature Mater. 6, 862–865 (2007).

    Article  CAS  Google Scholar 

  14. Tanabe, T., Notomi, M., Taniyama, H. & Kuramochi, E. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009).

    Article  Google Scholar 

  15. Vignolini, S. et al. Near-field imaging of coupled photonic-crystal microcavities. Appl. Phys. Lett. 94, 151103 (2009).

    Article  Google Scholar 

  16. Intonti, F. et al. Young's type interference for probing the mode symmetry in photonic structures. Phys. Rev. Lett. 106, 143901 (2011).

    Article  CAS  Google Scholar 

  17. Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photon. 6, 56–61 (2011).

    Article  Google Scholar 

  18. Notomi, M. et al. Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Express 15, 17458–17481 (2007).

    Article  CAS  Google Scholar 

  19. Hughes, S. Coupled-cavity QED using planar photonic crystals. Phys. Rev. Lett. 98, 083603 (2007).

    Article  CAS  Google Scholar 

  20. Song, B-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  CAS  Google Scholar 

  21. Dündar, M. A., Voorbraak, J. A. M., Nötzel, R., Fiore, A. & van der Heijden, R. W. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Appl. Phys. Lett. 100, 081107 (2009).

    Article  Google Scholar 

  22. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296 (2005).

    Article  CAS  Google Scholar 

  23. Fushman, I. et al. Ultrafast nonlinear optical tuning of photonic crystal cavities. Appl. Phys. Lett. 90, 091118 (2007).

    Article  Google Scholar 

  24. Johne, R. & Fiore, A. Single-photon absorption and dynamic control of the exciton energy in a coupled quantum-dot–cavity system. Phys. Rev. A 84, 053850 (2011).

    Article  Google Scholar 

  25. Fox, A. M., Miller, D. A. B., Livescu, G., Cunningham, J. E. & William, Y. J. Quantum well carrier sweep out: relation to electroabsorption and exciton saturation. IEEE J. Quant. Electron. 27, 2281–2295 (1991).

    Article  CAS  Google Scholar 

  26. Vasil'ev, P. P. Ultrashort pulse generation in diode lasers. Opt. Quant. Electron. 24, 801–824 (1992).

    Article  CAS  Google Scholar 

  27. Cohen-Tannoudji, C. Manipulating atoms with photons. Phys. Scripta 33, T076 (1998).

    Google Scholar 

  28. Anantathanasarn, S., Nötzel, R., van Veldhoven, P. J., Eijkemans, T. J. & Wolter, J. H. Wavelength-tunable (1.55–μm region) InAs quantum dots in InGaAsP/InP (100) grown by metal–organic vapor-phase epitaxy. J. Appl. Phys. 99, 013503 (2003).

    Google Scholar 

  29. Zinoni, C. et al. Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors. Appl. Phys. Lett. 91, 031106 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The nanofabrication work was carried out in the NanoLab@TU/e cleanroom. The authors are grateful to B. Wang, M. A. Dündar and R. W. van der Heijden for fruitful discussions on the fabrication and experiments, to Z. Zhou, D. Sahin, F. M. Pagliano, C. P. Dietrich, E. J. Geluk, E. Smalbrugge, T. de Vries, M. van Vlokhoven, J. M. van Ruijven and P. A. M. Nouwens for technical support, to V. Savona for useful discussions on the theoretical aspects and to P. M. Koenraad and E. Pelucchi for a critical reading of the manuscript. This research is supported financially by NanoNextNL, a micro and nanotechnology program of the Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL&I) and 130 partners, the Dutch Technology Foundation STW, Applied Science Division of NWO, the Technology Program of the Ministry of Economic Affairs under project No. 10380 and the FOM project No. 09PR2675. One of the authors (A.F.) dedicates this work to the memory of E. Rosencher.

Author information

Authors and Affiliations

Authors

Contributions

A.F. proposed the experiment and led the project. C-Y.J., M.Y.S. and L.M. performed the optical simulations. P.J.V. grew the sample. C-Y.J. designed and fabricated the devices. C-Y.J., M.Y.S. and T.B.H. performed the measurements. R.J. developed the theory. C-Y.J., R.J., A.F. and L.M. prepared the manuscript. All authors contributed to the discussion.

Corresponding author

Correspondence to Chao-Yuan Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, CY., Johne, R., Swinkels, M. et al. Ultrafast non-local control of spontaneous emission. Nature Nanotech 9, 886–890 (2014). https://doi.org/10.1038/nnano.2014.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.190

  • Springer Nature Limited

This article is cited by

Navigation