Skip to main content
Log in

A multi-sill magma plumbing system beneath the axis of the East Pacific Rise

  • Letter
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

Abstract

Upper oceanic crust at fast- to intermediate-spreading mid-ocean ridges is thought to form from the intrusion and eruption of magma accumulated within a mid-crustal reservoir present beneath the ridge axis1,2,3. However, the mechanisms for formation of the lower crust are debated4,5,6,7,8. Observations from pieces of ancient oceanic crust exposed on land — ophiolites — imply that multiple small magma lenses exist throughout the lower crust at mid-ocean ridges and help form the crust4,6,7, yet seismic data have imaged only a single lens beneath the innermost axial zones of various mid-ocean ridges1,2,3. Here we use high-fidelity seismic data to image the crust beneath the East Pacific Rise. We identify a series of reflections below the axial magma lens that we interpret as magma lenses in the upper part of the lower crust. These reflections are present between 9° 20′ and 9° 57′ N and are located up to 1.5 km below the axial magma lens. From the geometry and amplitude of the reflections in a zone beneath a recent volcanic eruption9, we infer that magma drained from a lower lens helped replenish the axial magma lens above and, perhaps, contributed to the eruption. Our data indicate that a multi-level complex of magma lenses is present beneath the East Pacific Rise and probably contributes to the formation of both the upper and lower crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Characteristics of the AML and SAML seismic reflections imaged along the EPR.
Figure 2: AVO behaviour of the AML and SAML.
Figure 3: Scenario for the 2005–2006 eruption.

Similar content being viewed by others

References

  1. Detrick, R. S. et al. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326, 35–42 (1987).

    Article  Google Scholar 

  2. Kent, G. M., Harding, A. J. & Orcutt, J. A. Distribution of magma beneath the East Pacific Rise between the Clipperton transform and the 9° 17′ N Deval from forward modeling of common depth point data. J. Geophys. Res. 98, 13945–13969 (1993).

    Article  Google Scholar 

  3. Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).

    Article  Google Scholar 

  4. Nicolas, A., Ceuleneer, G., Boudier, F. & Misseri, M. Structural mapping in the Oman ophiolites: Mantle diapirism along an oceanic ridge. Tectonophysics 151, 27–56 (1988).

    Article  Google Scholar 

  5. Phipps-Morgan, J. & Chen, Y. J. The genesis of oceanic crust magma injection, hydrothermal cooling, and crustal flow. J. Geophys. Res. 98, 6283–6297 (1993).

    Article  Google Scholar 

  6. Boudier, F., Nicolas, A. & Ildefonse, B. Magma chambers in the Oman ophiolite: Fed from the top and the bottom. Earth Planet. Sci. Lett. 144, 239–250 (1996).

    Article  Google Scholar 

  7. Kelemen, P. B., Kogu, K. & Shimizu, N. Geochemistry of gabbro sills in the crust–mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett. 146, 475–488 (1997).

    Article  Google Scholar 

  8. Natland, J. H. & Dick, H. J. B. Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. J. Volcanol. Geotherm. Res. 110, 191–233 (2001).

    Article  Google Scholar 

  9. Tolstoy, M., Waldhauser, F., Bohnenstiehl, D. R., Weekly, R. T. & Kim, W-Y. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451, 181–184 (2008).

    Article  Google Scholar 

  10. Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9° 30′ N. J. Geophys. Res. 105, 23537–23555 (2000).

    Article  Google Scholar 

  11. Canales, J. P., Nedimović, M. R., Kent, G. M., Carbotte, S. M. & Detrick, R. S. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca Ridge. Nature 460, 89–93 (2009).

    Article  Google Scholar 

  12. Canales, J. P. et al. Network of off-axis melt bodies at the East Pacific Rise. Nature Geosci. 5, 279–283 (2012).

    Article  Google Scholar 

  13. Singh, S. C., Kent, G. M., Collier, J. S., Harding, A. J. & Orcutt, J. A. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature 394, 874–878 (1998).

    Article  Google Scholar 

  14. Xu, M. et al. Variations in axial magma lens properties along the East Pacific Rise (9° 30′–10° 00′ N) from swath 3D seismic imaging and 1D waveform inversion. J. Geophys. Res. 119, 2721–2744 (2014).

    Article  Google Scholar 

  15. Collier, J. S. & Singh, S. C. Detailed structure of the top of the melt body beneath the East Pacific Rise at 9° 40′ N from waveform inversion of seismic reflection data. J. Geophys. Res. 102, 20287–20304 (1997).

    Article  Google Scholar 

  16. Nedimović, M. R. et al. Frozen melt lenses below the oceanic crust. Nature 436, 1149–1152 (2005).

    Article  Google Scholar 

  17. Haymon, R. M. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45′–52′ N: Direct submersible observations of the seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101 (1993).

    Article  Google Scholar 

  18. Soule, S. A., Fornari, D. J., Perfit, M. R. & Rubin, K. H. New insights into mid-ocean ridge volcanic processes from the 2005–2006 eruption of the East Pacific Rise, 9° 46′–9° 56′ N. Geology 35, 1079–1082 (2007).

    Article  Google Scholar 

  19. Carbotte, S. M. et al. Fine-scale segmentation of the crustal magma reservoir beneath the modern eruptive zone of the East Pacific Rise. Nature Geosci. 6, 866–870 (2013).

    Article  Google Scholar 

  20. Fundis, A. T., Soule, S. A., Fornari, D. J. & Perfit, M. R. Paving the seafloor: Volcanic emplacement processes during the 2005–2006 eruptions at the fast spreading East Pacific Rise, 9° 50′ N. Geochem. Geophys. Geosyst. 11, Q08024 (2010).

    Article  Google Scholar 

  21. Goss, A. R. et al. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9° 46′ N–9° 56′ N: Implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem. Geophys. Geosyst. 11, Q05T09 (2010).

    Article  Google Scholar 

  22. Marjanović, M. Signatures of Present and Past Melt Distribution Along Fast and Intermediate Spreading Centers PhD thesis, Columbia Univ. (2013)

  23. Wanless, V. D. & Shaw, A. M. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nature Geosci. 5, 651–655 (2012).

    Article  Google Scholar 

  24. Tarasewicz, J., White, R. S., Woods, A. W., Brandsdóttir, B. & Gudmundsson, M. T. Magma mobilization by downward-propagating decompression of the Eyjafjallajökull volcanic plumbing system. Geophys. Res. Lett. 39, L19309 (2012).

    Article  Google Scholar 

  25. Mutter, J. C., Carbotte, S. M., Nedimović, N. R., Canales, J. P. & Carton, H. Seismic imaging in three dimensions on the East Pacific Rise. EOS Trans. Am. Geophys. Union 90, 374–375 (2009).

    Article  Google Scholar 

  26. Harding, A. J., Kent, G. M. & Orcutt, J. A. A multichannel seismic investigation of upper crustal structure at 9° N on the East Pacific Rise: Implications for crustal accretion. J. Geophys. Res. 98, 13925–13944 (1993).

    Article  Google Scholar 

  27. Canales, J. P. et al. Seismic evidence for variations in axial magma chamber properties along the southern Juan de Fuca Ridge. Earth Planet. Sci. Lett. 246, 353–366 (2006).

    Article  Google Scholar 

  28. Guy, E. D., Radzevicius, S. J. & Conroy, J. P. Computer programs for application of equations describing elastic and electromagnetic wave scattering from planar interfaces. Comput. Geosci. 29, 569–575 (2003).

    Article  Google Scholar 

  29. Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

    Article  Google Scholar 

  30. White, S. M., Haymon, R. M. & Carbotte, S. M. A new view of ridge segmentation and near-axis volcanism at the East Pacific Rise, 8–12° N, from EM300 multibeam bathymetry. Geochem. Geophys. Geosyst. 7, Q12O05 (2006).

    Google Scholar 

  31. Soule, S. A. Interpretation of the extent of the axial summit trough and new lava emplaced during the 2005–2006 eruption(s) at the East Pacific Rise 9° N. (Integrated Earth Data Applications, 2012); http://dx.doi.org/10.1594/IEDA/100071

Download references

Acknowledgements

We thank Captain M. Landow, crew, and technical staff led by R. Steinhaus. We are also very grateful to J. Malloy, D. Foster and C. Mosher from ConocoPhillips for comments and suggestions on the technical part of the paper. This research was supported by NSF awards OCE0327872 to J.C.M. and S.M.C., OCE-0327885 to J.P.C., and OCE0624401 to M.R.N.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the MCS field experiment. M.M. carried out the MCS processing and data analysis. M.M. and S.M.C. interpreted the data and wrote the paper with contributions from all co-authors.

Corresponding author

Correspondence to Milena Marjanović.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marjanović, M., Carbotte, S., Carton, H. et al. A multi-sill magma plumbing system beneath the axis of the East Pacific Rise. Nature Geosci 7, 825–829 (2014). https://doi.org/10.1038/ngeo2272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2272

  • Springer Nature Limited

This article is cited by

Navigation