Skip to main content

Advertisement

Log in

Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone

  • Review
  • Published:
Leukemia Submit manuscript

Abstract

Interferon alpha (IFN-α) has been used for over 30 years to treat myeloproliferative neoplasms (MPNs). IFN-α was shown to induce clinical, hematological, molecular and histopathological responses in small clinical studies. Such combined efficacy has never been achieved with any other drug to date in such a significant proportion of patients. However, toxicity remains a limitation to its broader use despite the development of pegylated forms with better tolerance. Several on going phase 3 studies of peg- IFN-α versus hydroxyurea will help to define its exact place in MPN management. IFN-α efficacy is likely the consequence of a broad range of biological properties, including enhancement of immune response, direct effects on malignant cells and ability to cycle dormant malignant stem cells. However, comprehensive elucidation of its mechanism of action is still lacking. Sustained clinical, molecular and morphological responses after IFN-α discontinuation raised the hope that this drug could eradicate MPN. There is now consistent evidence showing that IFN-α is able to eliminate malignant clones harboring JAK2V617F or Calreticulin mutations. However, the molecular complexity of these diseases could hamper IFN-α efficacy, as the presence of additional non-driver mutations, like in the TET2 gene, could be associated with resistance to IFN-α. Therefore, combined therapy with another targeted agent could be required to eradicate MPN, and the best IFN-α companion for achieving this challenge remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellucci S, Harousseau JL, Brice P, Tobelem G . Treatment of essential thrombocythaemia by alpha 2a interferon. Lancet 1988; 2: 960–961.

    Article  CAS  Google Scholar 

  2. Ludwig H, Cortelezzi A, Van Camp BG, Polli E, Scheithauer W, Kuzmits R et al. Treatment with recombinant interferon-alpha-2C: multiple myeloma and thrombocythaemia in myeloproliferative diseases. Oncology 1985; 42: 19–25.

    Article  Google Scholar 

  3. Silver RT . Recombinant interferon-alpha for treatment of polycythaemia vera. Lancet 1988; 2: 403.

    Article  CAS  Google Scholar 

  4. Kiladjian JJ, Chomienne C, Fenaux P . Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia 2008; 22: 1990–1998.

    Article  CAS  Google Scholar 

  5. Kiladjian JJ, Mesa RA, Hoffman R . The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood 2011; 117: 4706–4715.

    Article  CAS  Google Scholar 

  6. Geyer HL, Mesa RA . Therapy for myeloproliferative neoplasms: when, which agent, and how? Blood 2014; 124: 3529–3537.

    Article  CAS  Google Scholar 

  7. Hasselbalch HC, Larsen TS, Riley CH, Jensen MK, Kiladjian JJ . Interferon-alpha in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. Status and perspectives. Curr Drug Targets 2011; 12: 392–419.

    Article  CAS  Google Scholar 

  8. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008; 112: 3065–3072.

    Article  CAS  Google Scholar 

  9. Quintas-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 2009; 27: 5418–5424.

    Article  CAS  Google Scholar 

  10. Them NC, Bagienski K, Berg T, Gisslinger B, Schalling M, Chen D et al. Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg-proline-interferon alpha-2b. Am J Hematol 2014; 90: 288–294.

    Article  Google Scholar 

  11. Stauffer Larsen T, Iversen KF, Hansen E, Mathiasen AB, Marcher C, Frederiksen M et al. Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res 2013; 37: 1041–1045.

    Article  CAS  Google Scholar 

  12. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011; 29: 761–770.

    Article  Google Scholar 

  13. Silver RT, Kiladjian JJ, Hasselbalch HC . Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev Hematol 2013; 6: 49–58.

    Article  CAS  Google Scholar 

  14. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003; 8: 237–249.

    Article  CAS  Google Scholar 

  15. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC . Antiproliferative properties of type I and type II interferon. Pharmaceuticals (Basel) 2010; 3: 994–1015.

    Article  CAS  Google Scholar 

  16. Biron CA . Interferons alpha and beta as immune regulators—a new look. Immunity 2001; 14: 661–664.

    Article  CAS  Google Scholar 

  17. Burchert A, Müller MC, Kostrewa P, Erben P, Bostel T, Liebler S et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol 2010; 28: 1429–1435.

    Article  CAS  Google Scholar 

  18. Burchert A, Saussele S, Eigendorff E, Müller MC, Sohlbach K, Inselmann S et al. Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia. Leukemia 2015; 29: 1331–1335.

    Article  CAS  Google Scholar 

  19. Garicochea B, van Rhee F, Spencer A, Chase A, Lin F, Cross NC et al. Aplasia after donor lymphocyte infusion (DLI) for CML in relapse after sex-mismatched BMT: recovery of donor-type haemopoiesis predicted by non-isotopic in situ hybridization (ISH). Br J Haematol 1994; 88: 400–402.

    Article  CAS  Google Scholar 

  20. Klyuchnikov E, Holler E, Bornhäuser M, Kobbe G, Nagler A, Shimoni A et al. Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting. Br J Haematol 2012; 159: 172–181.

    Article  Google Scholar 

  21. Hasselbalch HC . Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?. Leuk Res 2013; 37: 214–220.

    Article  CAS  Google Scholar 

  22. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.

    Article  CAS  Google Scholar 

  23. Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med 2015; 372: 426–435.

    Article  Google Scholar 

  24. Hasselbalch HC . Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol 2014; 7: 203–216.

    Article  CAS  Google Scholar 

  25. Kiladjian JJ, Massé A, Cassinat B, Mokrani H, Teyssandier I, le Couédic JP et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia 2010; 24: 1519–1523.

    Article  CAS  Google Scholar 

  26. Hino M, Futami E, Okuno S, Miki T, Nishizawa Y, Morii H . Possible selective effects of interferon alpha-2b on a malignant clone in a case of polycythemia vera. Ann Hematol 1993; 66: 161–162.

    Article  CAS  Google Scholar 

  27. Liu E, Jelinek J, Pastore YD, Guan Y, Prchal JF, Prchal JT . Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin. Blood 2003; 101: 3294–3301.

    Article  CAS  Google Scholar 

  28. Massaro P, Foa P, Pomati M, LaTargia ML, Iurlo A, Clerici C et al. Polycythemia vera treated with recombinant interferon-alpha 2a: evidence of a selective effect on the malignant clone. Am J Hematol 1997; 56: 126–128.

    Article  CAS  Google Scholar 

  29. Messora C, Bensi L, Vecchi A, Longo R, Giacobbi F, Temperani P et al. Cytogenetic conversion in a case of polycythaemia vera treated with interferon-alpha. Br J Haematol 1994; 86: 402–404.

    Article  CAS  Google Scholar 

  30. Kiladjian JJ, Chevret S, Dosquet C, Chomienne C, Rain JD . Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol 2011; 29: 3907–3913.

    Article  Google Scholar 

  31. Alvarez-Larrán A, Pereira A, Cervantes F, Arellano-Rodrigo E, Hernández-Boluda JC, Ferrer-Marín F et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood 2012; 119: 1363–1369.

    Article  Google Scholar 

  32. Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353: 33–45.

    Article  CAS  Google Scholar 

  33. Gisslinger H, Gotic M, Holowiecki J, Penka M, Thiele J, Kvasnicka HM et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood 2013; 121: 1720–1728.

    Article  CAS  Google Scholar 

  34. Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood 2015; 126: 1762–1769.

    Article  CAS  Google Scholar 

  35. Ishii T, Xu M, Zhao Y, Hu WY, Ciurea S, Bruno E et al. Recurrence of clonal hematopoiesis after discontinuing pegylated recombinant interferon-alpha 2a in a patient with polycythemia vera. Leukemia 2007; 21: 373–374.

    Article  CAS  Google Scholar 

  36. Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia 2013; 27: 2032–2039.

    Article  CAS  Google Scholar 

  37. Guglielmelli P, Rotunno G, Bogani C, Mannarelli C, Giunti L, Provenzano A et al. Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis. Br J Haematol 2015; e-pub ahead of print 25 August 2015; doi:10.1111/bjh.13644.

    Article  Google Scholar 

  38. Verger E, Cassinat B, Chauveau A, Dosquet C, Giraudier S, Schlageter MH et al. Clinical and molecular response to interferon alpha therapy in essential thrombocythemia patients with CALR mutations. Blood 2015; e-pub ahead of print 20 October 2015.

  39. Barosi G, Mesa R, Finazzi G, Harrison C, Kiladjian JJ, Lengfelder E et al. Revised response criteria for polycythemia vera and essential thrombocythemia: a ELN and IWG-MRT consensus project. Blood 2013; 121: 4778–4781.

    Article  CAS  Google Scholar 

  40. Baerlocher GM, Oppliger Leibundgut E, Ottmann OG, Spitzer G, Odenike O, McDevitt MA et al. Telomerase inhibitor Imetelstat in patients with essential thrombocythemia. N Engl J Med 2015; 373: 920–928.

    Article  CAS  Google Scholar 

  41. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM et al. A pilot study of the telomerase inhibitor Imetelstat for myelofibrosis. N Engl J Med 2015; 373: 908–919.

    Article  CAS  Google Scholar 

  42. Quintás-Cardama A, Abdel-Wahab O, Manshouri T, Kilpivaara O, Cortes J, Roupie AL et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a. Blood 2013; 122: 893–901.

    Article  Google Scholar 

  43. Silver RT, Vandris K, Goldman JJ . Recombinant interferon-α may retard progression of early primary myelofibrosis: a preliminary report. Blood 2011; 117: 6669–6672.

    Article  CAS  Google Scholar 

  44. Utke Rank C, Weis Bjerrum O, Larsen TS, Kjær L, de Stricker K, Riley CH et al. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma 2015, 1–7.

  45. Pizzi M, Silver RT, Barel A, Orazi A . Recombinant interferon-α in myelofibrosis reduces bone marrow fibrosis, improves its morphology and is associated with clinical response. Mod Pathol 2015; 28: 1315–1323.

    Article  CAS  Google Scholar 

  46. Ianotto JC, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, Demory JL et al. Efficacy and safety of pegylated-interferon α-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol 2013; 162: 783–791.

    Article  CAS  Google Scholar 

  47. Nguyen HM, Kiladjian JJ . Is there a role for the use of IFN-α in primary myelofibrosis? Hematology Am Soc Hematol Educ Program 2012; 2012: 567–570.

    Google Scholar 

  48. Larsen TS, Møller MB, de Stricker K, Nørgaard P, Samuelsson J, Marcher C et al. Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete hematological remission. Hematology 2009; 14: 331–334.

    Article  CAS  Google Scholar 

  49. Turlure P, Cambier N, Roussel M, Bellucci S, Zini J-M, Rain J-D et al. Complete hematological, molecular and histological remissions without cytoreductive treatment lasting after pegylated-interferon {alpha}-2a (peg-IFN{alpha}-2a) therapy in polycythemia vera (PV): long term results of a phase 2 trial. ASH Annual Meeting Abstracts 2011; 118: 280.

    Google Scholar 

  50. Barosi G . An immune dysregulation in MPN. Curr Hematol Malig Rep 2014; 9: 331–339.

    Article  Google Scholar 

  51. Rohon P . Biological therapy and the immune system in patients with chronic myeloid leukemia. Int J Hematol 2012; 96: 1–9.

    Article  CAS  Google Scholar 

  52. Riley CH, Jensen MK, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT et al. Increase in circulating CD4+CD25+Foxp3+ T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-α. Blood 2011; 118: 2170–2173.

    Article  Google Scholar 

  53. Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-α. Eur J Haematol 2015; 94: 227–234.

    Article  CAS  Google Scholar 

  54. Riley CH, Brimnes MK, Hansen M, Jensen MK, Hasselbalch HC, Kjaer L et al. Interferon-α induces marked alterations in circulating regulatory T cells, NK cell subsets and dendritic cells in patients with JAK2(V617F) -positive essential thrombocythemia and polycythemia vera. Eur J Haematol 2015; e-pub ahead of print 19 september 2015; doi:10.1111/ejh.12687.

    Article  Google Scholar 

  55. Chaligné R, James C, Tonetti C, Besancenot R, Le Couédic JP, Fava F et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 2007; 110: 3735–3743.

    Article  Google Scholar 

  56. Delhommeau F, Dupont S, Tonetti C, Massé A, Godin I, Le Couedic JP et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71–77.

    Article  CAS  Google Scholar 

  57. Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N . The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol 2007; 136: 745–751.

    Article  CAS  Google Scholar 

  58. James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood 2008; 112: 2429–2438.

    Article  CAS  Google Scholar 

  59. Pardanani A, Lasho TL, Finke C, Mesa RA, Hogan WJ, Ketterling RP et al. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes. Stem Cells 2007; 25: 2358–2362.

    Article  CAS  Google Scholar 

  60. Pardanani A, Lasho TL, Finke C, Markovic SN, Tefferi A . Demonstration of MPLW515K, but not JAK2V617F, in in vitro expanded CD4+ T lymphocytes. Leukemia 2007; 21: 2206–2207.

    Article  CAS  Google Scholar 

  61. Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO et al. Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 1997; 89: 1133–1142.

    CAS  Google Scholar 

  62. Gaikwad A, Nussenzveig R, Liu E, Gottshalk S, Chang K, Prchal JT . In vitro expansion of erythroid progenitors from polycythemia vera patients leads to decrease in JAK2 V617F allele. Exp Hematol 2007; 35: 587–595.

    Article  CAS  Google Scholar 

  63. Bacher N, Graulich E, Jonuleit H, Grabbe S, Steinbrink K . Interferon-α abrogates tolerance induction by human tolerogenic dendritic cells. PLoS One 2011; 6: e22763.

    Article  CAS  Google Scholar 

  64. Kreutzman A, Rohon P, Faber E, Indrak K, Juvonen V, Kairisto V et al. Chronic myeloid leukemia patients in prolonged remission following interferon-α monotherapy have distinct cytokine and oligoclonal lymphocyte profile. PLoS One 2011; 6: e23022.

    Article  CAS  Google Scholar 

  65. Briard D, Brouty-Boyé D, Giron-Michel J, Azzarone B, Jasmin C, Le Bousse-Kerdilès C . Impaired NK cell differentiation of blood-derived CD34+ progenitors from patients with myeloid metaplasia with myelofibrosis. Clin Immunol 2003; 106: 201–212.

    Article  CAS  Google Scholar 

  66. Gersuk GM, Carmel R, Pattamakom S, Challita PM, Rabinowitz AP, Pattengale PK . Quantitative and functional studies of impaired natural killer (NK) cells in patients with myelofibrosis, essential thrombocythemia, and polycythemia vera. I. A potential role for platelet-derived growth factor in defective NK cytotoxicity. Nat Immun 1993; 12: 136–151.

    CAS  Google Scholar 

  67. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 2009; 458: 904–908.

    Article  CAS  Google Scholar 

  68. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 2014; 211: 245–262.

    Article  CAS  Google Scholar 

  69. Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood 2013; 122: 1464–1477.

    Article  CAS  Google Scholar 

  70. Mullally A, Bruedigam C, Poveromo L, Heidel FH, Purdon A, Vu T et al. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood 2013; 121: 3692–3702.

    Article  CAS  Google Scholar 

  71. Mullally A, Poveromo L, Schneider RK, Al-Shahrour F, Lane SW, Ebert BL . Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F polycythemia vera. Blood 2012; 120: 166–172.

    Article  CAS  Google Scholar 

  72. Lu M, Zhang W, Li Y, Berenzon D, Wang X, Wang J et al. Interferon-alpha targets JAK2V617F-positive hematopoietic progenitor cells and acts through the p38 MAPK pathway. Exp Hematol 2010; 38: 472–480.

    Article  CAS  Google Scholar 

  73. Hasan S, Cassinat B, Droin N, Le Couedic JP, Favale F, Monte-Mor B et al. Use of the 46/1 haplotype to model JAK2(V617F) clonal architecture in PV patients: clonal evolution and impact of IFNα treatment. Leukemia 2014; 28: 460–463.

    Article  CAS  Google Scholar 

  74. McMullin MF, Harrison CN, Niederwieser D, Demuynck H, Jäkel N, Gopalakrishna P et al. The use of erythropoiesis-stimulating agents with ruxolitinib in patients with myelofibrosis in COMFORT-II: an open-label, phase 3 study assessing efficacy and safety of ruxolitinib versus best available therapy in the treatment of myelofibrosis. Exp Hematol Oncol 2015; 4: 26.

    Article  Google Scholar 

  75. Bjørn ME, de Stricker K, Kjær L, Ellemann K, Hasselbalch HC . Combination therapy with interferon and JAK1-2 inhibitor is feasible: proof of concept with rapid reduction in JAK2V617F-allele burden in polycythemia vera. Leuk Res Rep 2014; 3: 73–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-J Kiladjian.

Ethics declarations

Competing interests

J-JK has received research support from Novartis and AOP Orphan. BC and SG declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiladjian, JJ., Giraudier, S. & Cassinat, B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia 30, 776–781 (2016). https://doi.org/10.1038/leu.2015.326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.326

  • Springer Nature Limited

This article is cited by

Navigation