Skip to main content

Advertisement

Log in

Chronic Myeloproliferative Neoplasias

The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy

  • Original Article
  • Published:
Leukemia Submit manuscript

Abstract

Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil–MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Caughey GH . Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 2007; 217: 141–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galli SJ, Tsai M . Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 2010; 40: 1843–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 2013; 121: 4930–4937.

    Article  CAS  PubMed  Google Scholar 

  4. Sismanopoulos N, Delivanis DA, Mavrommati D, Hatziagelaki E, Conti P, Theoharides TC . Do mast cells link obesity and asthma? Allergy 2012; 68: 8–15.

    Article  PubMed  Google Scholar 

  5. Jung M, Lord MS, Cheng B, Lyons JG, Alkhouri H, Hughes JM et al. Mast cells produce novel shorter forms of perlecan that contain functional endorepellin: a role in angiogenesis and wound healing. J Biol Chem 2013; 288: 3289–3304.

    Article  CAS  PubMed  Google Scholar 

  6. Younan GJ, Heit YI, Dastouri P, Kekhia H, Xing W, Gurish MF et al. Mast cells are required in the proliferation and remodeling phases of microdeformational wound therapy. Plast Reconstr Surg 2011; 128: 649e–658e.

    Article  PubMed  Google Scholar 

  7. Glimelius I, Edström A, Fischer M, Nilsson G, Sundström C, Molin D et al. Angiogenesis and mast cells in Hodgkin lymphoma. Leukemia 2005; 19: 2360–2362.

    Article  CAS  PubMed  Google Scholar 

  8. Mizuno H, Nakayama T, Miyata Y, Saito S, Nishiwaki S, Nakao N et al. Mast cells promote the growth of Hodgkin’s lymphoma cell tumor by modifying the tumor microenvironment that can be perturbedby bortezomib. Leukemia 2012; 26: 2269–2276.

    Article  CAS  PubMed  Google Scholar 

  9. Ribatti D, Molica S, Vacca A, Nico B, Crivellato E, Roccaro AM et al. Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 2003; 17: 1428–1430.

    Article  CAS  PubMed  Google Scholar 

  10. Gotlib J, Pardanani A, Akin C, Reiter A, George T, Hermine O et al. International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) & European Competence Network on Mastocytosis (ECNM) consensus response criteria in advanced systemic mastocytosis. Blood 2013; 121: 2393–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pardanani A . Systemic mastocytosis in adults: 2013 update on diagnosis, risk stratification, and management. Am J Hematol 2013; 88: 612–624.

    Article  CAS  PubMed  Google Scholar 

  12. Pardanani A, Tefferi A . Systemic mastocytosis in adults: a review on prognosis and treatment based on 342 Mayo Clinic patients and current literature. Curr Opin Hematol 2010; 17: 125–132.

    Article  PubMed  Google Scholar 

  13. Nagata H, Worobec AS, Semere T, Metcalfe DD . Elevated expression of the proto-oncogene c-kit in patients with mastocytosis. Leukemia 1998; 12: 175–181.

    Article  CAS  PubMed  Google Scholar 

  14. Valent P, Sperr WR, Akin C . How I treat patients with advanced systemic mastocytosis. Blood 2010; 116: 5812–5817.

    Article  CAS  PubMed  Google Scholar 

  15. Georgin-Lavialle S, Lhermitte L, Dubreuil P, Chandesris MO, Hermine O, Damaj G . Mast cell leukemia. Blood 2013; 121: 1285–1295.

    Article  CAS  PubMed  Google Scholar 

  16. Lasho T, Tefferi A, Pardanani A . Inhibition of JAK-STAT signaling by TG101348: a novel mechanism for inhibition of KITD816V-dependent growth in mast cell leukemia cells. Leukemia 2010; 24: 1378–1380.

    Article  CAS  PubMed  Google Scholar 

  17. Bubnoff von N, Gorantla SHP, Kancha RK, Lordick F, Peschel C, Duyster J . The systemic mastocytosis-specific activating cKit mutation D816V can be inhibited by the tyrosine kinase inhibitor AMN107. Leukemia 2005; 19: 1670–1671.

    Article  Google Scholar 

  18. Chen C-C, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ . Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA 2005; 102: 11408–11413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S-I, Shigematsu H, Ozawa H et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 2005; 102: 18105–18110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Franco CB, Chen C-C, Drukker M, Weissman IL, Galli SJ . Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 2010; 6: 361–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salmon JM, Slater NJ, Hall MA, McCormack MP, Nutt SL, Jane SM et al. Aberrant mast-cell differentiation in mice lacking the stem-cell leukemia gene. Blood 2007; 110: 3573–3581.

    Article  CAS  PubMed  Google Scholar 

  22. Motakis E, Guhl S, Ishizu Y, Itoh M, Kawaji H, de Hoon M et al. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood 2014; 123: e58–e67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma P, Mali RS, Munugalavadla V, Krishnan S, Ramdas B, Sims E et al. The PI3K pathway drives the maturation of mast cells via microphthalmia transcription factor. Blood 2011; 118: 3459–3469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L, Bianchi L et al. GATA-1 as a Regulator of Mast Cell Differentiation Revealed by the Phenotype of the GATA-1low Mouse Mutant. Journal of Experimental Medicine 2003; 197: 281–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D et al. Antagonistic regulation by the transcription factors c/ebpa and mitf specifies basophiland mast cell fates. Immunity 2013; 39: 97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17: 665–676.

    Article  CAS  PubMed  Google Scholar 

  27. Shyh-Chang N, Daley GQ . Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 2013; 12: 395–406.

    Article  PubMed  PubMed Central  Google Scholar 

  28. West JA, Viswanathan SR, Yabuuchi A, Cunniff K, Takeuchi A, Park I-H et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 2009; 460: 909–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41: 843–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  31. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Molenaar JJ, Domingo-Fernández R, Ebus ME, Lindner S, Koster J, Drabek K et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 2012; 44: 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  33. King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK . LIN28B Promotes Colon Cancer Progression and Metastasis. Cancer Res 2011; 71: 4260–4268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Urbach A, Yermalovich A, Zhang J, Spina CS, Zhu H, Perez-Atayde AR et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev 2014; 28: 971–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 2010; 42: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS et al. The Lin28/let-7 axis regulates glucose metabolism. Cell, Elsevier Inc; 2011; 147: 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shyh-Chang N, Zhu H, de Soysa TY, Shinoda G, Seligson MT, Tsanov KM et al. Lin28 enhances tissue repairby reprogramming cellular metabolism. Cell 2013; 155: 778–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilbert ML, Huelga SC, Kapeli K, Stark TJ, Liang TY, Chen SX et al. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell 2012; 48: 195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho J, Chang H, Kwon SC, Kim B, Kim Y, Choe J et al. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 2012; 151: 765–777.

    Article  CAS  PubMed  Google Scholar 

  40. Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA . Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 2012; 335: 1195–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee YT, de Vasconcellos JF, Yuan J, Byrnes C, Noh SJ, Meier ER et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood 2013; 122: 1034–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Copley MR, Babovic S, Benz C, DJHF Knapp, Beer PA, Kent DG et al. The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol 2013; 15: 916–925.

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhuri AA, So AYL, Mehta A, Minisandram A, Sinha N, Jonsson VD et al. Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci USA 2012; 109: 4233–4238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beachy SH, Onozawa M, Chung YJ, Slape C, Bilke S, Francis P et al. Enforced expression of Lin28b leads to impaired T-cell development, release of inflammatory cytokines, and peripheral T-cell lymphoma. Blood 2012; 120: 1048–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao S, Lee SY, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z et al. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 2012; 120: 3764–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuan J, Muljo SA . Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 2013; 253: 290–303.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mican JA, Arora N, Burd PR, Metcalfe DD . Passive cutaneous anaphylaxis in mouse skin is associated with local accumulation of interleukin-6 mRNA and immunoreactive interleukin-6 protein. J Allergy Clin Immunol 1992; 90: 815–824.

    Article  CAS  PubMed  Google Scholar 

  48. Arock M, Le Nours A, Malbec O, Daëron M . Ex vivo and in vitro primary mast cells. Methods Mol Biol 2008; 415: 241–254.

    CAS  PubMed  Google Scholar 

  49. Hallgren J, Gurish MF . Mast cell progenitor trafficking and maturation. Adv Exp Med Biol 2011; 716: 14–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jamur MC, Moreno AN, Mello LF, Souza Júnior DA, Campos MRC, Pastor MVD et al. Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors. BMC Immunol 2010; 11: 32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ekoff M, Nilsson G . Mast cell apoptosis and survival. Adv Exp Med Biol 2011; 716: 47–60.

    Article  CAS  PubMed  Google Scholar 

  52. Fukuishi N, Igawa Y, Kunimi T, Hamano H, Toyota M, Takahashi H et al. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer. PLoS ONE 2013; 8: e60837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dvorak AM . Ultrastructural studies of human basophils and mast cells. J Histochem Cytochem 2005; 53: 1043–1070.

    Article  CAS  PubMed  Google Scholar 

  54. Tenen DG . Abnormalities of the CEBP alpha transcription factor: a major target in acute myeloid leukemia. Leukemia 2001; 15: 688–689.

    Article  CAS  PubMed  Google Scholar 

  55. Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG . CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 1998; 18: 4301–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iwasaki H, Mizuno S-I, Wells RA, Cantor AB, Watanabe S, Akashi K . GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity 2003; 19: 451–462.

    Article  CAS  PubMed  Google Scholar 

  57. Sánchez-Muñoz L, Teodósio C, Morgado JM, Escribano L . Immunophenotypic characterization of bone marrow mast cells in mastocytosis and other mast cell disorders. Methods Cell Biol 2011; 103: 333–359.

    Article  PubMed  Google Scholar 

  58. Verstovsek S . Advanced systemic mastocytosis: the impact of KIT mutations in diagnosis, treatment, and progression. Eur J Haematol 2013; 90: 89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gotlib J, DeAngelo DJ, George TI, Corless CL, Linder A, Langford C et al. KIT inhibitor midostaurin exhibits a high rate of clincally meaningful and durable responses in advanced systemic mastocytosis: report of a full accrued phase II trial. Blood 2010; 116: 316.

    Google Scholar 

  60. Elliott MA, Pardanani A, Li CY, Tefferi A . Immunophenotypic normalization of aberrant mast cells accompanies histological remission in imatinib-treated patients with eosinophilia-associated mastocytosis. Leukemia 2004; 18: 1027–1029.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cem Akin, Alberto Orfao, Ann Dvorak, David Weinstock, Susan Buchanan, Girijesh Buruzula, Joyce LaVecchio, Atsuya Wakabayashi, Jacobo Ramirez, Elsa Lindhe, Louise Trakimas and Maria Ericsson of the HMS electron microscopy core facility, and the DF/HCC Specialized Histopathology facility for their assistance. This work was supported by a Damon Runyon-Sohn Foundation Cancer Research Fellowship (DRSG 02-12) and a St. Baldrick’s Foundation-PALS Scholar Award (243625; LDW), a Helen Hay Whitney Cancer Fellowship (SD), a Burroughs-Wellcome Fund Career Award (HZ), and grants from the NIH (R01-HL088582 and P30DK036836; AJW), (R01-GM107536; GQD), (K08-CA157727; HZ) and the Ellison Medical Foundation (GQD).

Author Contributions

LDW, TNR, DSP, RGR, GQD, and AJW designed experiments and interpreted data. LDW, TNR, PTN, DSP, JLS, and RGR performed experiments. SD, HZ, and GQD developed and characterized transgenic mice. RCL and DJD provided samples through DFCI Protocol 01-206. LDW wrote the manuscript; LDW, RGR, TNR, DJD, DSP, GQD, and AJW edited it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Wagers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Rao, T., Rowe, R. et al. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy. Leukemia 29, 1320–1330 (2015). https://doi.org/10.1038/leu.2015.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.19

  • Springer Nature Limited

This article is cited by

Navigation