Skip to main content

Advertisement

Log in

Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations

  • Original Article
  • Published:
Journal of Exposure Science & Environmental Epidemiology Submit manuscript

Abstract

Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001–2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Beazoglou T, Eklund S, Heffley D, Meiers J, Brown LJ, Bailit H . Economic impact of regulating the use of amalgam restorations. Public Health Rep 2007; 122: 657–663.

    Article  Google Scholar 

  2. USFDA (US Food and Drug Administration) White Paper: FDA Update/Review of Potential Adverse Health Risks Associated with Exposure to Mercury in Dental Amalgam. National Center for Toxicological Research, USFDA: Washington, DC. 2009.

  3. Richardson GM . Mercury exposure and risks from dental amalgam in Canada: the Canadian Health Measures Survey 2007–2009. Hum Ecol Risk Assess 2014; 20: 433–447.

    Article  CAS  Google Scholar 

  4. Richardson GM, Wilson R, Allard D, Purtill C, Douma S, Gravière J . Mercury exposure and risks from dental amalgam in the US population, post-2000. Sci Total Environ 2011; 409: 4257–4268.

    Article  CAS  Google Scholar 

  5. Richardson GM . Inhalation of mercury-contaminated particulate matter by dentists: an overlooked occupational risk. Hum Ecol Risk Assess 2003; 9: 1519–1531.

    Article  CAS  Google Scholar 

  6. Richardson GM, Evidence that bisphenol-a exposure is not associated with composite resin dental fillings. E-Letter, PediatricsOnline at http://pediatrics.aappublications.org/content/130/2/e328/reply. Published August 21 2012.

  7. Richardson GM . Assessment of adult exposure and risks from components and degradation products of composite resin dental materials. Hum Ecol Risk Assess 1997; 3: 683–697.

    Article  CAS  Google Scholar 

  8. Richardson GM, Clark KE, Williams DR . Preliminary estimates of adult exposure to bisphenol-a from dental materials, food and ambient air. In: Henshel DS, Black MC, Harrass MC (eds). Environmental Toxicology and Risk Assessment: Standardization of Biomarkers for Endocrine Disruption and Environmental Assessment: Eighth Volume. American Society for Testing and Materials: West Conshohocken, PA. 1999 pp 286–301.

    Google Scholar 

  9. Joskow R, Barr DB, Barr JR, Calafat AM, Needham LL, Rubin C . Exposure to bisphenol A from bis-glycidyl dimethacrylate-based dental sealants. J Am Dent Assoc 2006; 137: 353–362.

    Article  CAS  Google Scholar 

  10. Zimmerman-Downs JM, Shuman D, Stull SC, Ratzlaff RE . Bisphenol A blood and saliva levels prior to and after dental sealant placement in adults. J Dent Hyg 2010; 184: 145–150.

    Google Scholar 

  11. Nicolae A, An Analysis of the Relationship between Urinary Mercury Levels and the Number of Dental Amalgam Restoration Surfaces in a Representative Group of the Canadian Population. Report prepared in association with the program on Dental Public Health, University of Toronto, Toronto, ON, Canada. Dated Summer/Fall 2010.

  12. Vidnes-Kopperud S, Tveit AB, Gaarden T, Sandvik L, Espelid I . Factors influencing dentists’ choice of amalgam and tooth-colored restorative materials for Class II preparations in younger patients. Acta Odontol Scand 2009; 67: 74–79.

    Article  CAS  Google Scholar 

  13. Tran LA, Messer LB . Clinicians’ choices of restorative materials for children. Austral Dent J 2003; 48: 221–232.

    Article  CAS  Google Scholar 

  14. Peretz B, Ram D . Restorative material for children's teeth: preferences of parents and children. ASDC J Dent Child 2002; 69: 233.

    Google Scholar 

  15. Elshahawy W, Ajlouni R, James W, Abdellatif H, Watanabe I . Elemental ion release from fixed restorative materials into patient saliva. J Oral Rehabil 2013; 40: 381–385.

    Article  CAS  Google Scholar 

  16. Ahlgren C, Molin M, Lundh T, Nilner K . Levels of gold in plasma after dental gold inlay insertion. Acta Odontol Scand 2007; 65: 331–334.

    Article  CAS  Google Scholar 

  17. ADA (American Dental Association). Practical science: direct and indirect restorative materials. J Am Dent Assoc 2003; 134: 463–472.

    Article  Google Scholar 

  18. Donaldson JA . The use of gold in dentistry: an historical overview, part 1. Gold Bull 1980; 13: 117–124.

    Article  CAS  Google Scholar 

  19. Donaldson JA . The use of gold in dentistry: an historical overview, part 2. Gold Bull 1980; 13: 160–165.

    Article  Google Scholar 

  20. Christensen G J . Longevity versus esthetics: the great restorative debate. J Am Dent Assoc 2007; 138: 1013–1015.

    Article  Google Scholar 

  21. Knosp H, Holliday RJ, Corti CW . Gold in dentistry: alloys, uses and performance. Gold Bull 2003; 36: 93–101.

    Article  Google Scholar 

  22. ADA (American Dental Association). Grills, ‘grillz’ and fronts. J Am Dent Assoc 2006; 137: 1192.

    Article  Google Scholar 

  23. Leinfelder KF . An evaluation of casting alloys used for restorative procedures. J Am Dent Assoc 1997; 128: 37–45.

    Article  CAS  Google Scholar 

  24. Chu S, Ahmad I . A historical perspective of synthetic ceramic and traditional feldspathic porcelain. Pract Proced Aesthet Dent 2005; 17: 593–598.

    PubMed  Google Scholar 

  25. Jones DW . A brief overview of dental ceramics. J Can Dent Assoc 1998; 64: 648–650.

    CAS  PubMed  Google Scholar 

  26. Kukiattrakoon B, Hengtrakool C, Kedjarune-Leggat U . The effect of acidic agents on surface ion leaching and surface characteristics of dental porcelains. J Prosthet Dent 2010; 103: 148–162.

    Article  CAS  Google Scholar 

  27. Christensen GJ . The coming demise of the cast gold restoration? J Am Dent Assoc 1996; 127: 1233–1236.

    Article  CAS  Google Scholar 

  28. Mormann WH . The evolution of the CEREC system. J Am Dent Assoc 2006; 137: 7S–13S.

    Article  Google Scholar 

  29. Eley BM . The future of dental amalgam: a review of the literature. Part 7: possible alternative materials to amalgam for the restoration of posterior teeth. Br Dent J 1997; 183: 11–14.

    Article  CAS  Google Scholar 

  30. USEPA (US Environmental Protection Agency) Risk Assessment Guidance for Superfund: Volume III - Part A, Process for Conducting Probabilistic Risk Assessment Report EPA 540-R-02-002. Office of Emergency and Remedial Response, USEPA: Washington, DC. 2001.

  31. NCHS (National Center for Health Statistics) Analytic and Reporting Guidelines: The National Health and Nutrition Examination Survey (NHANES). Centers for Disease Control and Prevention: Hyattsville, Maryland. 2005.

  32. Al-Hiyasat AS, Saunders WP, Sharkey SW, Smith GM, Gilmour WH . Investigation of human enamel wear against four dental ceramics and gold. J Dent 1998; 26: 487–495.

    Article  CAS  Google Scholar 

  33. Yip KH-K, Smales RJ, Kaidonis JA . Differential wear of teeth and restorative materials: clinical implications. Int J Prosthodon 2004; 17: 350–356.

    Google Scholar 

  34. Willems G, Lambrechts P, Braem M, Vanherle G, Classification and wear of dental composites. Proc. Int. Symp. on State-of-the-art on Direct Posterior Filling Materials and Dentin Bonding, Paris 1993.

  35. Kraus B S, Jordan R E, Abrams L . Dental Anatomy and Occlusion. Williams and Wilkins, Co: Baltimore, MD, 1978.

    Google Scholar 

  36. Haj-Ali R, Walker M P, Williams K . Survey of general dentists regarding posterior restorations, selection criteria, and associated clinical problems. Gen Dent 2005; 53: 369–375.

    PubMed  Google Scholar 

  37. Albertini T F, Kingman A, Brown J . Prevalence and distribution of dental restorative materials in US air force veterans. J Public Health Dent 1997; 57: 5–10.

    Article  CAS  Google Scholar 

  38. Kean WF, Kean IRL . Clinical pharmacology of gold. Inflammopharmacology 2008; 16: 112–125.

    Article  CAS  Google Scholar 

  39. Eisler R . Mammalian sensitivity to elemental gold (Au0. Biol Trace Elem Res 2004; 100: 1–17.

    Article  CAS  Google Scholar 

  40. Benemann J, Lehmann N, Bromen K, Marr A, Seiwert M, Schulz C, Jockel K-H . Assessing contamination paths of the German adult population with gold and platinum. The German Environmental Survey 1998 (GerES III). Int J Hyg Environ Health 2005; 208: 499–508.

    Article  CAS  Google Scholar 

  41. Schierl R . Urinary platinum levels associated with dental gold alloys. Arch Environ Health 2001; 56: 283–286.

    Article  CAS  Google Scholar 

  42. Drasch G,; Muss C, Roider G . Gold and palladium burden from dental restoration materials. J Trace Elem Med Biol 2000; 14: 71–75.

    Article  CAS  Google Scholar 

  43. Schrauzer GN . Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr 2002; 21: 14–21.

    Article  CAS  Google Scholar 

  44. Shiotsuki I, Terao T, Ogami H, Ishii N, Yoshimura R, Nakamura J . Drinking spring water and lithium absorption: a preliminary study. Ger J Psychiatry 2008; 11: 103–106.

    Google Scholar 

  45. Milleding P, Haraldsson C, Karlsson S . Ion leaching from dental ceramics during static in vitro corrosion testing. J Biomed Mater Res 2002; 61: 541–550.

    Article  CAS  Google Scholar 

  46. Garhammer P, Hiller KA, Reitinger T, Schmalz G . Metal content of saliva of patients with and without metal restorations. Clin Oral Investig 2004; 8: 238–242.

    Article  CAS  Google Scholar 

  47. CADTH (Canadian Agency for Drugs and Technologies in Health) Composite Resin and Amalgam Dental Filling Materials: A Review of Safety, Clinical Effectiveness and Cost-effectiveness. CADTH: Ottawa, Canada. 2012.

  48. SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks) Scientific opinion on the Safety of Dental Amalgam and Alternative Dental Restoration Materials for Patients and Users. Health and Consumer Protection Directorate-General, European Commission: Brussels. 2008.

  49. Begerow J, Neuendorf J, Turfeld M, Raab W, Dunemann L . Long-term urinary platinum, palladium, and gold excretion of patients after insertion of noble-metal dental alloys. Biomarkers 1999; 4: 27–36.

    Article  CAS  Google Scholar 

  50. Lopez-Alias J F, Martinez-Gomis J, Anglada J M, Peraire M . Ion release from dental casting alloys as assessed by a continuous flow system: nutritional and toxicological implications. Dent Mater 2006; 22: 832–837.

    Article  CAS  Google Scholar 

  51. Sjogren G, Sletten G, Dahl JE . Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. J Prosthet Dent 2000; 84: 229–236.

    Article  CAS  Google Scholar 

  52. Wataha JC, Lockwood PE . Release of elements from dental casting alloys into cell-culture medium over 10 months. Dent Mater 1998; 14: 158–163.

    Article  CAS  Google Scholar 

  53. Elshahawy W, Watanabe I, Koike M . Elemental ion release from four different fixed prosthodontic materials. Dent Mater 2009; 25: 976–981.

    Article  CAS  Google Scholar 

  54. Hero H, Jorgensen R, Sorbroden E . A low-gold dental alloy–structure and segregations. J Dent Res 1982; 61: 1292–1298.

    Article  CAS  Google Scholar 

  55. Johansson G, Bergman M, Anneroth G, Eskafi M . Human pulpal response to direct filling gold restorations. Scand J Dent Res 1993; 101: 78–83.

    CAS  PubMed  Google Scholar 

  56. Lappalainen R, Yli-Urpo A . Release of elements from some gold-alloys and amalgams in corrosion. Scand J Dent Res 1987; 95: 364–368.

    CAS  PubMed  Google Scholar 

  57. Ogino T, Koizumi H, Furuchi M, Murakami M, Matsumura H, Tanoue N . Effect of a metal priming agent on wear resistance of gold alloy-indirect composite joint. Dent Mater J 2007; 26: 201–208.

    Article  CAS  Google Scholar 

  58. Ucar Y, Brantley WA, Johnston WM, Dasgupta T . Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys. J Prosthet Dent 2011; 105: 394–402.

    Article  CAS  Google Scholar 

  59. Wataha JC . Alloys for prosthodontic restorations. J Prosthet Dent 2002; 87: 351–363.

    Article  Google Scholar 

  60. Wataha JC, Lockwood PE, Khajotia SS, Turner R . Effect of pH on element release from dental casting alloys. J Prosthet Dent 1998; 80: 691–698.

    Article  CAS  Google Scholar 

  61. USEPA (US Environmental Protection Agency). Integrated Risk Information System (IRIS). Online at http://www.epa.gov/iris/. Accessed on 15 December 2013.

  62. Health Canada Federal Contaminated Site Risk Assessment in Canada Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors, Version 20. Contaminated Sites Division, Health Canada: Ottawa, ON, Canada. 2010.

  63. EMA (European Medicines Agency) Guideline on the specification limits for residues of metal catalysts, Doc. Ref. CPMP/SWP/QWP/4446/00 corr Committee for Human Medicinal Products, EMA: London, UK. 2007.

  64. Moskowitz PD, Bernholc N, DePhillips MP, Viren J . Derived reference doses for three compounds used in the photovoltaics industry: copper indium diselenide, copper gallium diselenide, and cadium telleride Report BNL-62045. Biomedical and Environmental Assessment Group, Analytical Sciences Division, Department of Applied Science, Brookhaven National Laboratory: Long Island, NY, Dated July 6, 1995.

    Book  Google Scholar 

  65. Anusavice KJ . Degradability of dental ceramics. Adv Dent Res 1992; 6: 82–89.

    Article  CAS  Google Scholar 

  66. Elmaria A, Goldstein G, Vijayaraghavan T, Legeros RZ, Hittelman EL . An evaluation of wear when enamel is opposed by various ceramic materials and gold. J Prosthet Dent 2006; 96: 345–353.

    Article  CAS  Google Scholar 

  67. Jakovac M, Zivko-Babic J, Curkovic L, Aurer A . Measurement of ion elution from dental ceramics. J Europ Ceram Soc 2006; 26: 1695–1700.

    Article  CAS  Google Scholar 

  68. Kase HR, Tesk JA, Case ED . Elastic constants of two dental porcelains. J Mater Sci 1985; 20: 524–531.

    Article  Google Scholar 

  69. Roy S, Basu B . Hardness properties and microscopic investigation of crack–crystal interaction in SiO2–MgO–Al2O3–K2O–B2O3–F glass ceramic system. J Mater Sci Mater Med 2010; 21: 109–122.

    Article  CAS  Google Scholar 

  70. Santos C, Souza RC, Almeida N, Almeida FA, Silva RRF, Fernandes MHFV . Toughened ZrO2 ceramics sintered with a La2O3-rich glass as additive. J Mater Process Technol 2008; 200: 126–132.

    Article  CAS  Google Scholar 

  71. Uo M, Sjoren G, Sundh A, Watari F, Bergman M, Lerner U . Cytotoxicity and bonding property of dental ceramics. Dent Mater 2003; 19: 487–492.

    Article  CAS  Google Scholar 

  72. Zhang Y, Kim J-W . Graded structures for damage resistant and aesthetic all-ceramic restorations. Dent Mater 2009; 25: 781–790.

    Article  Google Scholar 

  73. UKEGVM (UK Expert Group on Vitamins and Minerals) Safe Upper Levels for Vitamins and Minerals. UKEGVM, Committee on Toxicology, Food Standards Agency: UK. 2003.

  74. USEPA (US Environmental Protection Agency). Regional Screening Level (RSL) Summary Table. USEPA, Region 3. Online at http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm. Accessed 15 December 2013.

  75. NVDEP (Nevada Division of Environmental Protection) Technical memorandum: Toxicity Criteria for Titanium and Compounds, and for Tungsten and Compounds. Nevada State Department of Conservation and Natural Resources. 2008.

  76. Hacker CH, Wagner WC, Razzoog ME . An in vitro investigation of the wear of enamel on porcelain and gold in saliva. J Prosthet Dent 1996; 75: 14–17.

    Article  CAS  Google Scholar 

  77. Ramp MH, Suzuki S, Cox CF, Lacefield WR, Koth DL . Evaluation of wear: enamel opposing three ceramic materials and a gold alloy. J Prosthet Dent 1997; 77: 523–530.

    Article  CAS  Google Scholar 

  78. Graf K, Johnson GH, Mehl A, Rammelsberg P . The influence of dental alloys on three-body wear of human enamel and dentin in an inlay-like situation. Oper Dent 2002; 27: 167–174.

    CAS  PubMed  Google Scholar 

  79. Suzuki S, Nagai E, Taira Y, Minesaki Y . In vitro wear of indirect composite restoratives. J Prosthet Dent 2002; 88: 431–436.

    Article  CAS  Google Scholar 

  80. Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T . Wear resistance of experimental Ti-Cu alloys. Biomaterials 2003; 24: 3377–3381.

    Article  CAS  Google Scholar 

  81. Alarcon JV, Engelmeier RL, Powers JM, Triolo. PT . Wear testing of composite, gold, porcelain, and enamel opposing a removable cobalt–chromium partial denture alloy. J Prosthodont 2009; 18: 421–426.

    Article  Google Scholar 

  82. Delong R, Douglas WH, Sakaguchi RL, Pintado MR . The wear of dental porcelain in an artificial mouth. Dent Mater 1986; 2: 214–219.

    Article  CAS  Google Scholar 

  83. Leinfelder KF, Suzuki S . In vitro wear device for determining posterior composite wear. J Am Dent Assoc 1999; 130: 1347–1353.

    Article  CAS  Google Scholar 

  84. Al-Hiyasat AS, Saunders WP, Smith GM . Three-body wear associated with three ceramics and enamel. J Prosthet Dent 1999; 82: 476–481.

    Article  CAS  Google Scholar 

  85. Krejci I, Lutz F, Reimer M, Heinzmann JL . Wear of ceramic inlays, their enamel antagonists, and luting cements. J Prosthet Dent 1993; 69: 425–430.

    Article  CAS  Google Scholar 

  86. Ramp MH, Ramp LC, Suzuki S . Vertical height loss: an investigation of four restorative materials opposing enamel. J Prosthodont 1999; 8: 252–257.

    Article  CAS  Google Scholar 

  87. Richardson GM, Brecher R, Scobie H, Hamblen J, Phillips K, Samuelian J, Smith C . Mercury vapour (Hg0: continuing toxicological uncertainties, and establishing a Canadian reference exposure level. Regul Toxicol Pharmacol 2009; 53: 32–38.

    Article  CAS  Google Scholar 

  88. Willhite CC, Ball GL, McLellan CJ . Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. J Toxicol Environ Health B Crit Rev 2008; 11: 69–146.

    Article  CAS  Google Scholar 

  89. USEPA (US Environmental Protection Agency). Integrated Risk Information System (IRIS). Online at http://www.epa.gov/iris/. Accessed 7 January 2015.

Download references

Acknowledgements

Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada, Collaborative Research and Training Experience (CREATE) Grant in Human and Ecological Risk Assessment (HERA), to SDS and GMR. Funding in kind, for time committed by GMR and SRC, was provided, respectively, by Stantec Consulting, and SNC-Lavalin Environment, both of Ottawa, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mark Richardson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, G., Clemow, S., Peters, R. et al. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations. J Expo Sci Environ Epidemiol 26, 70–77 (2016). https://doi.org/10.1038/jes.2015.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.17

  • Springer Nature America, Inc.

Keywords

This article is cited by

Navigation