Skip to main content

Advertisement

Log in

Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility

  • Pediatric Original Article
  • Published:
International Journal of Obesity Submit manuscript

Abstract

Purpose:

Increasing evidence exists that maternal obesity (MO) and overnutrition during pregnancy and lactation have long-lasting consequences for progeny metabolism, cardiovascular and endocrine function. Data on effects of MO on offspring reproduction are limited. We hypothesized that MO during pregnancy and lactation in founder F0 rat mothers would increase testicular and sperm oxidative stress (OS) and adversely impact male fertility in their F1 offspring.

Methods:

We induced pre-pregnancy MO by feeding F0 females a high-fat diet from weaning through pregnancy and lactation. After weaning, all F1 rats ate control (C) diet. We determined serum testosterone, malondialdehyde (MDA), reactive oxygen species (ROS) and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in F1 testes and sperm at postnatal days (PNDs) 110, 450 and 650.

Results:

At PNDs 450 and 650, MO offspring had lower luteinizing hormone while testosterone levels were lower at all ages. Testicular MDA and ROS concentrations and SOD and GPx activity were higher in MO F1 at all ages. Nitrotyrosine immunostaining was higher at all ages in MO F1 testes than C F1. At PNDs 450 and 650, MO F1 spermatozoa showed higher MDA concentrations and lower SOD and GPx activity with reduced sperm concentration, viability and motility, and more sperm abnormalities. Fertility rate was not affected at PND 110 but was lower in MO F1 at PNDs 450 and 650.

Conclusions:

We conclude that MO during pregnancy and lactation increases F1 testicular and sperm OS leading to premature aging of reproductive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Taylor PD, Samuelsson AM, Poston L . Maternal obesity and the developmental programming of hypertension: a role for leptin. Acta Physiol (Oxf) 2014; 210: 508–523.

    Article  CAS  Google Scholar 

  2. Zambrano E, Nathanielsz PW . Mechanisms by which maternal obesity programs offspring for obesity: evidence from animal studies. Nutr Rev 2013; 71 (Suppl 1): S42–S54.

    Article  Google Scholar 

  3. Williams L, Seki Y, Vuguin PM, Charron MJ . Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta 2014; 1842: 507–519.

    Article  CAS  Google Scholar 

  4. Parlee SD, Macdougald OA . Maternal nutrition and risk of obesity in offspring: The Trojan horse of developmental plasticity. Biochim Biophys Acta 2014; 1842: 495–506.

    Article  CAS  Google Scholar 

  5. Portha B, Chavey A, Movassat J . Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass. Exp Diabetes Res 2011; 2011: 105076.

    PubMed  PubMed Central  Google Scholar 

  6. Ingelfinger JR, Nuyt AM . Impact of fetal programming, birth weight, and infant feeding on later hypertension. J Clin Hypertens (Greenwich) 2012; 14: 365–371.

    Article  Google Scholar 

  7. Desai M, Beall M, Ross MG . Developmental origins of obesity: programmed adipogenesis. Curr Diabetes Rep 2013; 13: 27–33.

    Article  Google Scholar 

  8. Sarr O, Yang K, Regnault TR . In utero programming of later adiposity: the role of fetal growth restriction. J Pregnancy 2012; 2012: 134758.

    Article  Google Scholar 

  9. Zambrano E, Guzman C, Rodriguez-Gonzalez GL, Durand-Carbajal M, Nathanielsz PW . Fetal programming of sexual development and reproductive function. Mol Cell Endocrinol 2014; 382: 538–549.

    Article  CAS  Google Scholar 

  10. Zambrano E, Rodriguez-Gonzalez GL, Guzman C, Garcia-Becerra R, Boeck L, Diaz L et al. A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. J Physiol 2005; 563: 275–284.

    Article  CAS  Google Scholar 

  11. Zambrano E, Bautista CJ, Deas M, Martinez-Samayoa PM, Gonzalez-Zamorano M, Ledesma H et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol 2006; 571: 221–230.

    Article  CAS  Google Scholar 

  12. Zambrano E, Martinez-Samayoa PM, Bautista CJ, Deas M, Guillen L, Rodriguez-Gonzalez GL et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol 2005; 566: 225–236.

    Article  CAS  Google Scholar 

  13. Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S . Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 2009; 32: 1076–1080.

    Article  CAS  Google Scholar 

  14. Zambrano E, Martinez-Samayoa PM, Rodriguez-Gonzalez GL, Nathanielsz PW . Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol 2010; 588: 1791–1799.

    Article  CAS  Google Scholar 

  15. Vega CC, Reyes-Castro LA, Bautista CJ, Larrea F, Nathanielsz PW, Zambrano E . Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 2013. e-pub ahead of print 16 August 2013 doi:10.1038/ijo.2013.150.

  16. Grissom N, Bowman N, Reyes TM . Epigenetic programming of reward function in offspring: a role for maternal diet. Mamm Genome 2014; 25: 41–48.

    Article  CAS  Google Scholar 

  17. Rodriguez JS, Rodriguez-Gonzalez GL, Reyes-Castro LA, Ibanez C, Ramirez A, Chavira R et al. Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre-gestation or in gestation. Int J Dev Neurosci 2012; 30: 75–81.

    Article  CAS  Google Scholar 

  18. Sloboda DM, Howie GJ, Pleasants A, Gluckman PD, Vickers MH . Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PloS One 2009; 4: e6744.

    Article  Google Scholar 

  19. Howie GJ, Sloboda DM, Kamal T, Vickers MH . Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 2009; 587: 905–915.

    Article  CAS  Google Scholar 

  20. Connor KL, Vickers MH, Beltrand J, Meaney MJ, Sloboda DM . Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function. J Physiol 2012; 590: 2167–2180.

    Article  CAS  Google Scholar 

  21. Hounsgaard ML, Hakonsen LB, Vested A, Thulstrup AM, Olsen J, Bonde JP et al. Maternal pre-pregnancy body mass index and pubertal development among sons. Andrology 2014; 2: 198–204.

    Article  CAS  Google Scholar 

  22. Ramlau-Hansen CH, Nohr EA, Thulstrup AM, Bonde JP, Storgaard L, Olsen J . Is maternal obesity related to semen quality in the male offspring? A pilot study. Hum Reprod 2007; 22: 2758–2762.

    Article  CAS  Google Scholar 

  23. Martini AC, Molina RI, Tissera A, Ruiz RD, de Cuneo MF . The impact of obesity on male reproduction: its biological significance. Exp Rev Endocrinol Metab 2013; 8: 139–148.

    Article  CAS  Google Scholar 

  24. Aggerholm AS, Thulstrup AM, Toft G, Ramlau-Hansen CH, Bonde JP . Is overweight a risk factor for reduced semen quality and altered serum sex hormone profile? Fertil Steril 2008; 90: 619–626.

    Article  CAS  Google Scholar 

  25. Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R . Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril 2010; 93: 2222–2231.

    Article  CAS  Google Scholar 

  26. Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M . Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab 2012; 302: E768–E780.

    Article  CAS  Google Scholar 

  27. Erdemir F, Atilgan D, Markoc F, Boztepe O, Suha-Parlaktas B, Sahin S . [The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters]. Actas Urol Esp 2012; 36: 153–159.

    Article  CAS  Google Scholar 

  28. Sikka SC . Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci 1996; 1: e78–e86.

    Article  CAS  Google Scholar 

  29. Rodriguez-Gonzalez GL, Reyes-Castro LA, Vega CC, Boeck L, Ibanez C, Nathanielsz PW et al. Accelerated aging of reproductive capacity in male rat offspring of protein-restricted mothers is associated with increased testicular and sperm oxidative stress. Age (Dordr) 2014; 36: 9721.

    Article  Google Scholar 

  30. Acer N, Sahin B, Usanmaz M, Tatoglu H, Irmak Z . Comparison of point counting and planimetry methods for the assessment of cerebellar volume in human using magnetic resonance imaging: a stereological study. Surg Radiol Anat 2008; 30: 335–339.

    Article  Google Scholar 

  31. Liu Z, Chang Q, Xu ZL, Zhang ZG . Stereological measurement of rat's seminiferous tubule. Chin Med J 2009; 122: 2643–2646.

    PubMed  Google Scholar 

  32. Villamor E, Cnattingius S . Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 2006; 368: 1164–1170.

    Article  Google Scholar 

  33. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 2008; 51: 383–392.

    Article  CAS  Google Scholar 

  34. Nathanielsz PW, Ford SP, Long NM, Vega CC, Reyes-Castro LA, Zambrano E . Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy. Nutr Rev 2013; 71 (Suppl 1): S78–S87.

    Article  Google Scholar 

  35. Pi-Sunyer FX . The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 2002; 10 (Suppl 2): 97S–104S.

    Article  Google Scholar 

  36. Derby CA, Zilber S, Brambilla D, Morales KH, McKinlay JB . Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin Endocrinol 2006; 65: 125–131.

    Article  CAS  Google Scholar 

  37. Chimento A, Sirianni R, Casaburi I, Pezzi V . Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus-pituitary-testis axis and spermatogenesis. Front Endocrinol 2014; 5: 1.

    Google Scholar 

  38. Hotaling JM, Patel Z . Male endocrine dysfunction. Urol Clin North Am 2014; 41: 39–53.

    Article  Google Scholar 

  39. Bonavera JJ, Swerdloff RS, Leung A, Lue YH, Baravarian S, Superlano L et al. In the male brown-Norway (BN) male rat, reproductive aging is associated with decreased LH-pulse amplitude and area. J Androl 1997; 18: 359–365.

    CAS  PubMed  Google Scholar 

  40. Walczak-Jedrzejowska R, Wolski JK, Slowikowska-Hilczer J . The role of oxidative stress and antioxidants in male fertility. Cent Eur J Urol 2013; 66: 60–67.

    Article  CAS  Google Scholar 

  41. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 2007; 116: 1234–1241.

    Article  CAS  Google Scholar 

  42. Conceicao EP, Franco JG, Oliveira E, Resende AC, Amaral TA, Peixoto-Silva N et al. Oxidative stress programming in a rat model of postnatal early overnutrition—role of insulin resistance. J Nutr Biochem 2013; 24: 81–87.

    Article  CAS  Google Scholar 

  43. Thompson LP, Al-Hasan Y . Impact of oxidative stress in fetal programming. J Pregnancy 2012; 2012: 582748.

    Article  Google Scholar 

  44. Jarvie E, Hauguel-de-Mouzon S, Nelson SM, Sattar N, Catalano PM, Freeman DJ . Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring. Clin Sci (Lond) 2010; 119: 123–129.

    Article  CAS  Google Scholar 

  45. Poston L, Igosheva N, Mistry HD, Seed PT, Shennan AH, Rana S et al. Role of oxidative stress and antioxidant supplementation in pregnancy disorders. Am J Clin Nutr 2011; 94: 1980S–1985S.

    Article  CAS  Google Scholar 

  46. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A et al. Maternal obesity is associated with a lipotoxic placental environment. Placenta 2014; 35: 171–177.

    Article  CAS  Google Scholar 

  47. Strakovsky RS, Pan YX . In utero oxidative stress epigenetically programs antioxidant defense capacity and adulthood diseases. Antioxid Redox Signal 2012; 17: 237–253.

    Article  CAS  Google Scholar 

  48. Tarry-Adkins JL, Chen JH, Jones RH, Smith NH, Ozanne SE . Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 2010; 24: 2762–2771.

    Article  CAS  Google Scholar 

  49. Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M . Age at menarche: Influences of prenatal and postnatal growth. J Clin Endocrinol Metab 2007; 92: 46–50.

    Article  CAS  Google Scholar 

  50. Michalakis K, Mintziori G, Kaprara A, Tarlatzis BC, Goulis DG . The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. Metabolism 2013; 62: 457–478.

    Article  CAS  Google Scholar 

  51. Doshi SB, Khullar K, Sharma RK, Agarwal A . Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol 2012; 10: 109.

    Article  CAS  Google Scholar 

  52. Ischiropoulos H . Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 1998; 356: 1–11.

    Article  CAS  Google Scholar 

  53. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L . Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci 2013; 14: 10497–10538.

    Article  Google Scholar 

  54. Dennery PA . Oxidative stress in development: nature or nurture? Free Radic Biol Med 2010; 49: 1147–1151.

    Article  CAS  Google Scholar 

  55. Stuart JA, Maddalena LA, Merilovich M, Robb EL . A midlife crisis for the mitochondrial free radical theory of aging. Longevity & healthspan 2014; 3: 4.

    Article  Google Scholar 

  56. Agarwal A, Saleh RA, Bedaiwy MA . Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003; 79: 829–843.

    Article  Google Scholar 

  57. Omu AE . Sperm parameters: paradigmatic index of good health and longevity. Med Princ Pract 2013; 22 (Suppl 1): 30–42.

    Article  Google Scholar 

  58. Aitken RJ, Baker MA . Reactive oxygen species generation by human spermatozoa: a continuing enigma. Int J Androl 2002; 25: 191–194.

    Article  Google Scholar 

  59. Palmer NO, Bakos HW, Fullston T, Lane M . Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2012; 2: 253–263.

    Article  Google Scholar 

  60. Landry D, Cloutier F, Martin LJ . Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol 2013; 13: 1–14.

    Article  Google Scholar 

Download references

Acknowledgements

GLR-G and LAR-Care graduate students from Doctorado en Ciencias Biomédicas, Facultad de Medicina, CI is graduate student from Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México and are recipients of Consejo Nacional de Ciencias y Tecnología (CONACyT) fellowship. This work was supported by CONACyT México 155166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Zambrano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-González, G., Vega, C., Boeck, L. et al. Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. Int J Obes 39, 549–556 (2015). https://doi.org/10.1038/ijo.2014.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.209

  • Springer Nature Limited

This article is cited by

Navigation