Skip to main content

Advertisement

Log in

Mesenchymal stromal cells overexpressing vascular endothelial growth factor in ovine myocardial infarction

  • Original Article
  • Published:
Gene Therapy Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) are cardioprotective in acute myocardial infarction (AMI). Besides, we have shown that intramyocardial injection of plasmid-VEGF165 (pVEGF) in ovine AMI reduces infarct size and improves left ventricular (LV) function. We thus hypothesized that MSCs overexpressing VEGF165 (MSCs-pVEGF) would afford greater cardioprotection than non-modified MSCs or pVEGF alone. Sheep underwent an anteroapical AMI and, 1 week later, received intramyocardial MSCs-pVEGF in the infarct border. One month post treatment, infarct size (magnetic resonance) decreased by 31% vs pre-treatment. Of note, myocardial salvage occurred predominantly at the subendocardium, the myocardial region displaying the largest contribution to systolic performance. Consistently, LV ejection fraction recovered to almost its baseline value because of marked decrease in end-systolic volume. None of these effects were observed in sheep receiving non-transfected MSCs or pVEGF. Although myocardial retention of MSCs decreased steeply over time, the treatment induced significant capillary and arteriolar proliferation, which reduced subendocardial fibrosis. We conclude that in ovine AMI, allogeneic VEGF-overexpressing MSCs induce subendocardial myocardium salvage through microvascular proliferation, reducing infarct size and improving LV function more than non-transfected MSCs or the naked plasmid. Importantly, the use of a plasmid rather than a virus allows for repeated treatments, likely needed in ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. World Health Organization World Heart Federation World Stroke Organization 2011. Global atlas on cardiovascular disease prevention and control. Policies, strategies and interventions. http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/.

  2. Tiyyagura SR, Pinney SP . Left ventricular remodeling after myocardial infarction: past, present, and future. Mt Sinai J Med 2006; 73: 840–851.

    PubMed  Google Scholar 

  3. Lenderink T, Simoons ML, Van Es GA, Van de Werf F, Verstraete M, Arnold AE . Benefit of thrombolytic therapy is sustained throughout five years and is related to TIMI perfusion grade 3 but not grade 2 flow at discharge. The European Cooperative Study Group. Circulation 1995; 92: 1110–1116.

    Article  CAS  Google Scholar 

  4. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E . Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 1991; 260: H1406–H1414.

    CAS  PubMed  Google Scholar 

  5. Cohn JN . Post-MI remodeling. Clin Cardiol 1993; 16 (suppl 2): II21–II24.

    Article  CAS  Google Scholar 

  6. Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ . Cell therapy for cardiac repair: Lessons from clinical trials. Nat Rev Cardiol 2014; 11: 232–246.

    Article  Google Scholar 

  7. Yang Y, Min JY, Rana JS, Ke Q, Cai J, Chen Y et al. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J Appl Physiol 2002; 93: 1140–1151.

    Article  CAS  Google Scholar 

  8. Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005; 25: 1168–1173.

    Article  CAS  Google Scholar 

  9. Guo Y, He J, Wu J, Yang L, Dai S, Tan X et al. Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 2008; 39: 179–188.

    Article  CAS  Google Scholar 

  10. Kim SH, Moon HH, Kim HA, Hwang KC, Lee M, Choi D . Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischaemic injury. Mol Ther 2011; 19: 741–750.

    Article  CAS  Google Scholar 

  11. Yao J, Jiang S-L, Liu W, Liu C, Chen W, Sun L et al. Tissue inhibitor of matrix metalloproteinase 3 or vascular endothelial growth factor transfection of aged human mesenchymal stem cells enhances cell therapy after myocardial infarction. Rejuvenation Res 2012; 15: 495–506.

    Article  CAS  Google Scholar 

  12. Kearns-Jonker M, Dai W, Gunthart M, Fuentes T, Yeh HY, Gerczuk P et al. Genetically engineered mesenchymal stem cells influence gene expression in donor cardiomyocytes and the recipient heart. J Stem Cell Res Ther 2012; S1: pii:005.

  13. Lu F, Zhao X, Wu J, Cui Y, Mao Y, Chen K et al. MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis. Int J Cardiol 2013; 167: 2524–2532.

    Article  Google Scholar 

  14. Salem HK, Thiemermann C . Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells 2010; 28: 585–596.

    CAS  PubMed  Google Scholar 

  15. Boyle AJ, McNiece IK, Hare JM . Mesenchymal stem cell therapy for cardiac repair. Methods Mol Biol 2010; 660: 65–84.

    Article  CAS  Google Scholar 

  16. Laguens R, Cabeza Meckert P, Vera Janavel G, Del Valle H, Lascano E, Negroni J et al. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer. Gene Ther 2002; 9: 1676–1681.

    Article  CAS  Google Scholar 

  17. Laguens R, Cabeza Meckert P, Vera Janavel G, De Lorenzi A, Lascano E, Negroni J et al. Cardiomyocyte hyperplasia after plasmid-mediated vascular endothelial growth factor gene transfer in pigs with chronic myocardial ischemia. J Gene Med 2004; 6: 222–227.

    Article  CAS  Google Scholar 

  18. Vera Janavel G, Crottogini A, Cabeza Meckert P, Cuniberti L, Mele A, Papouchado M et al. Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther 2006; 13: 1133–1142.

    Article  CAS  Google Scholar 

  19. Vera Janavel G, De Lorenzi A, Cortés C, Olea FD, Cabeza Meckert P, Bercovich A et al. Effect of vascular endothelial growth factor gene transfer on infarct size, left ventricular function and myocardial perfusion in sheep after 2 months of coronary artery occlusion. J Gene Med 2012; 14: 279–287.

    Article  CAS  Google Scholar 

  20. Sabbah HN, Marzilli M, Stein PD . The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 1981; 240: H920–H926.

    CAS  PubMed  Google Scholar 

  21. Locatelli P, Olea FD, Hnatiuk A, Sepúlveda D, Pérez Sáez JM, Argüello R et al. Efficient plasmid-mediated gene transfection of ovine bone marrow mesenchymal stromal cells. Cytotherapy 2013; 15: 163–170.

    Article  CAS  Google Scholar 

  22. Crottogini A, Cabeza Meckert P, Vera Janavel G, Lascano E, Negroni J, Del Valle H et al. Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum Gene Ther 2003; 14: 1307–1318.

    Article  CAS  Google Scholar 

  23. Ferrarini M, Arsic N, Recchia FA, Zentilin L, Zacchigna S, Xu X et al. Adeno-associated virus-mediated tansduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ Res 2006; 98: 954–961.

    Article  CAS  Google Scholar 

  24. Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM et al. VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol 2008; 295: H2308–H2314.

    CAS  Google Scholar 

  25. Martens TP, See F, Schuster MD, Sondermeijer HP, Hefti MM, Zannettino A et al. Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 2006; 3 (suppl 1): S18–S22.

    Article  CAS  Google Scholar 

  26. Rahbarghazi R, Nassiri SM, Ahmadi Mohammadi E, Rabbani S, Araghi A, Hosseinkhani H . Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 2014; 173: 453–466.

    Article  Google Scholar 

  27. Korf-Klingebiel M, Kempf T, Sauer T, Brinkmann E, Fischer P, Meyer GP et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J 2008; 29: 2851–2858.

    Article  Google Scholar 

  28. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94: 678–685.

    Article  CAS  Google Scholar 

  29. Ranganath SH, Levy O, Inamdar MS, Karp JM . Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012; 10: 244–258.

    Article  CAS  Google Scholar 

  30. Gnecchi M, Zhang Z, Ni A, Dzau VJ . Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103: 1204–1219.

    Article  CAS  Google Scholar 

  31. Malliaras K, Marbán E . Cardiac cell therapy: where we've been, where we are, and where we should be headed. Br Med Bull 2011; 98: 161–185.

    Article  Google Scholar 

  32. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005; 112 (suppl): I150–I156.

    PubMed  Google Scholar 

  33. Zeng L, Hu Q, Wang X, Mansoor A, Lee J, Feygin J et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 2007; 115: 1866–1875.

    Article  Google Scholar 

  34. Hamamoto H, Gorman JH, Ryan LP, Hinmon R, Martens TP, Schuster MD et al. Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage. Ann Thorac Surg 2009; 87: 794–802.

    Article  Google Scholar 

  35. Favaloro L, Diez M, Mendiz O, Vera Janavel G, Valdivieso L, Ratto R et al. High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (Genesis-I). A phase I, open-label, two-year follow-up trial. Catheter Cardiovasc Interv 2013; 82: 899–906.

    Article  Google Scholar 

  36. Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist C, Borger MA, Di Mario C et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2012; 33: 2569–2619.

    Article  CAS  Google Scholar 

  37. Hu X, Wang J, Chen J, Luo R, He A, Xie X et al. Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 2007; 31: 438–443.

    Article  Google Scholar 

  38. Morales C, González GE, Rodríguez M, Bertolasi CA, Gelpi RJ . Histopathologic time course of myocardial infarct in rabbit hearts. Cardiovasc Pathol 2002; 11: 339–345.

    Article  Google Scholar 

  39. Zhang S, Sun A, Xu D, Yao K, Huang Z, Jin H et al. Impact of timing on efficacy and safety of intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol 2009; 32: 458–466.

    Article  Google Scholar 

  40. Locatelli P, Olea FD, Mendiz O, Salmo F, Fazzi L, Hnatiuk A et al. An ovine model of postinfarction dilated cardiomyopathy in animals with highly variable coronary anatomy. ILAR J 2011; 52: E16–E21.

    Article  Google Scholar 

  41. Masci PG, Bogaert J . Post myocardial infarction of the left ventricle: the course ahead seen by cardiac MRI. Cardiovasc Diagn Ther 2012; 2: 113–127.

    PubMed  PubMed Central  Google Scholar 

  42. Locatelli P, Olea FD, De Lorenzi A, Salmo F, Vera Janavel GL, Hnatiuk AP et al. Reference values for echocardiographic parameters and indexes of left ventricular function in healthy, young adult sheep used in translational research: comparison with standardized values in humans. Int J Clin Exp Med 2011; 4: 258–264.

    PubMed  PubMed Central  Google Scholar 

  43. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109: 1615–1622.

    Article  Google Scholar 

  44. Tepper OM, Galiano RD., Capla JM, Kalka C, Gagne PJ, Jacobowitz GR et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106: 2781–2786.

    Article  Google Scholar 

  45. You D, Cochain C, Loinard C, Vilar J, Mees B, Duriez M et al. Hypertension impairs postnatal vasculogenesis: role of antihypertensive agents. Hypertension 2008; 51: 1537–1544.

    Article  CAS  Google Scholar 

  46. Fan M, Chen W, Liu W, Du GQ, Jiang SL, Tian WC et al. The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res 2010; 13: 429–438.

    Article  Google Scholar 

Download references

Acknowledgements

We thank veterinarians María Inés Besansón and Pedro Iguain for anesthetic management and animal house assistants Juan Carlos Mansilla, Osvaldo Sosa and Juan Ocampo for dedicated care of the animals. We also thank Julio Martínez and Fabián Gauna for technical help. This study was supported by grants from the National Agency for the Promotion of Science and Technology (ANPCyT), Ministry of Science, Technology and Innovative Production (MINCyT) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Crottogini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locatelli, P., Olea, F., Hnatiuk, A. et al. Mesenchymal stromal cells overexpressing vascular endothelial growth factor in ovine myocardial infarction. Gene Ther 22, 449–457 (2015). https://doi.org/10.1038/gt.2015.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.28

  • Springer Nature Limited

This article is cited by

Navigation