Skip to main content

Advertisement

Log in

Langerin-mediated internalization of a modified peptide routes antigens to early endosomes and enhances cross-presentation by human Langerhans cells

  • Research Article
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

The potential of the skin immune system to generate immune responses is well established, and the skin is actively exploited as a vaccination site. Human skin contains several antigen-presenting cell subsets with specialized functions. In particular, the capacity to cross-present exogenous antigens to CD8+ T cells is of interest for the design of effective immunotherapies against viruses or cancer. Here, we show that primary human Langerhans cells (LCs) were able to cross-present a synthetic long peptide (SLP) to CD8+ T cells. In addition, modification of this SLP using antibodies against the receptor langerin, but not dectin-1, further enhanced the cross-presenting capacity of LCs through routing of internalized antigens to less proteolytic early endosome antigen 1+ early endosomes. The potency of LCs to enhance CD8+ T-cell responses could be further increased through activation of LCs with the toll-like receptor 3 ligand polyinosinic:polycytidylic acid (pI:C). Altogether, the data provide evidence that human LCs are able to cross-present antigens after langerin-mediated internalization. Furthermore, the potential for antigen modification to target LCs specifically provides a rationale for generating effective anti-tumor or anti-viral cytotoxic T lymphocyte responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199: 9–26.

    Article  CAS  PubMed  Google Scholar 

  2. Joffre OP, Segura E, Savina A, Amigorena S . Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12: 557–569.

    Article  CAS  PubMed  Google Scholar 

  3. Valladeau J, Dezutter-Dambuyant C, Saeland S . Langerin/CD207 sheds light on formation of birbeck granules and their possible function in Langerhans cells. Immunol Res 2003; 28: 93–107.

    Article  CAS  PubMed  Google Scholar 

  4. Feinberg H, Taylor ME, Razi N, McBride R, Knirel YA, Graham SA et al. Structural basis for langerin recognition of diverse pathogen and mammalian glycans through a single binding site. J Mol Biol 2011; 405: 1027–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furio L, Briotet I, Journeaux A, Billard H, Peguet-Navarro J . Human Langerhans cells are more efficient than CD14(-)CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells. J Invest Dermatol 2010; 130: 1345–1354.

    Article  CAS  PubMed  Google Scholar 

  6. Furio L, Billard H, Valladeau J, Peguet-Navarro J, Berthier-Vergnes O . Poly(I:C)-Treated human Langerhans cells promote the differentiation of CD4+ T cells producing IFN-gamma and IL-10. J Invest Dermatol 2009; 129: 1963–1971.

    Article  CAS  PubMed  Google Scholar 

  7. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008; 29: 497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Polak ME, Newell L, Taraban VY, Pickard C, Healy E, Friedmann PS et al. CD70-CD27 interaction augments CD8+ T-cell activation by human epidermal Langerhans cells. J Invest Dermatol 2012; 132: 1636–1644.

    Article  CAS  PubMed  Google Scholar 

  9. van der Vlist M, de Witte L, de Vries RD, Litjens M, de Jong MA, Fluitsma D et al. Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4(+) T cells but are incapable of cross-presentation. Eur J Immunol 2011; 41: 2619–2631.

    Article  CAS  PubMed  Google Scholar 

  10. Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, Edelson BT et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 2011; 35: 260–272.

    Article  CAS  PubMed  Google Scholar 

  11. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009; 10: 488–495.

    Article  CAS  PubMed  Google Scholar 

  12. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 2010; 207: 189–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Igyarto BZ, Kaplan DH . Antigen presentation by Langerhans cells. Curr Opin Immunol 2013; 25: 115–119.

    Article  CAS  PubMed  Google Scholar 

  14. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141 high XCR1+ dendritic cells. J Leukoc Biol 2015; 97: 627–634.

    Article  CAS  PubMed  Google Scholar 

  15. Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis E Sousa C . Myeloid C-type lectins in innate immunity. Nat Immunol 2006; 7: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  16. Tacken PJ, de Vries I, Torensma R, Figdor CG . Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7: 790–802.

    Article  CAS  PubMed  Google Scholar 

  17. Tel J, Sittig SP, Blom RA, Cruz LJ, Schreibelt G, Figdor CG et al. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J Immunol 2013; 191: 5005–5012.

    Article  CAS  PubMed  Google Scholar 

  18. Unger WW, van Beelen AJ, Bruijns SC, Joshi M, Fehres CM, van Bloois L et al. Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release 2012; 160: 88–95.

    Article  CAS  PubMed  Google Scholar 

  19. Weck MM, Appel S, Werth D, Sinzger C, Bringmann A, Grunebach F et al. hDectin-1 is involved in uptake and cross-presentation of cellular antigens. Blood 2008; 111: 4264–4272.

    Article  CAS  PubMed  Google Scholar 

  20. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovacsovics-Bankowski M, Rock KL . A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995; 267: 243–246.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, Amigorena S . Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999; 1: 362–368.

    Article  CAS  PubMed  Google Scholar 

  23. Shen L, Sigal LJ, Boes M, Rock KL . Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 2004; 21: 155–165.

    Article  CAS  PubMed  Google Scholar 

  24. Di PT, Chatterjee B, Smed-Sorensen A, Clayton S, Palazzo A, Montes M et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol 2008; 9: 551–557.

    Article  Google Scholar 

  25. Gromme M, Uytdehaag FG, Janssen H, Calafat J, van Binnendijk RS, Kenter MJ et al. Recycling MHC class I molecules and endosomal peptide loading. Proc Natl Acad Sci USA 1999; 96: 10326–10331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatterjee B, Smed-Sorensen A, Cohn L, Chalouni C, Vandlen R, Lee BC et al. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 2012; 120: 2011–20.

    Article  CAS  PubMed  Google Scholar 

  27. de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl TD et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 2007; 13: 367–371.

    Article  CAS  PubMed  Google Scholar 

  28. Salter RD, Cresswell P . Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J 1986; 5: 943–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fehres CM, Bruijns SC, van Beelen AJ, Kalay H, Ambrosini M, Hooijberg E et al. Topical rather than intradermal application of the TLR7 ligand imiquimod leads to human dermal dendritic cell maturation and CD8+ T-cell cross-priming. Eur J Immunol 2014; 44: 2415–2424.

    Article  CAS  PubMed  Google Scholar 

  30. Hooijberg E, Ruizendaal JJ, Snijders PJ, Kueter EW, Walboomers JM, Spits H . Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol 2000; 165: 4239–4245.

    Article  CAS  PubMed  Google Scholar 

  31. Angel CE, Lala A, Chen CJ, Edgar SG, Ostrovsky LL, Dunbar PR . CD14+ antigen-presenting cells in human dermis are less mature than their CD1a+ counterparts. Int Immunol 2007; 19: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  32. Eisenwort G, Jurkin J, Yasmin N, Bauer T, Gesslbauer B, Strobl H . Identification of TROP2 (TACSTD2), an EpCAM-like molecule, as a specific marker for TGF-beta1-dependent human epidermal Langerhans cells. J Invest Dermatol 2011; 131: 2049–2057.

    Article  CAS  PubMed  Google Scholar 

  33. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S et al. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141 high XCR1+ dendritic cells. J Leukoc Biol 2015; 97: 627–634.

    Article  CAS  PubMed  Google Scholar 

  34. Crespo MI, Zacca ER, Nunez NG, Ranocchia RP, Maccioni M, Maletto BA et al. TLR7 triggering with polyuridylic acid promotes cross-presentation in CD8alpha+ conventional dendritic cells by enhancing antigen preservation and MHC class I antigen permanence on the dendritic cell surface. J Immunol 2013; 190: 948–960.

    Article  CAS  PubMed  Google Scholar 

  35. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM . Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196: 1627–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 2006; 177: 7959–7967.

    Article  CAS  PubMed  Google Scholar 

  37. van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB . Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol 2007; 178: 1986–1990.

    Article  CAS  PubMed  Google Scholar 

  38. Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S . Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 2012; 209: 653–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood 2011; 118: 2502–2510.

    Article  CAS  PubMed  Google Scholar 

  40. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207: 1273–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207: 1247–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207: 1261–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schreibelt G, Klinkenberg LJ, Cruz LJ, Tacken PJ, Tel J, Kreutz M et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood 2012; 119: 2284–2292.

    Article  CAS  PubMed  Google Scholar 

  44. Chu CC, Ali N, Karagiannis P, Di MP, Skowera A, Napolitano L et al. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med 2012; 209: 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flacher V, Tripp CH, Stoitzner P, Haid B, Ebner S, Del FB et al. Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J Invest Dermatol 2010; 130: 755–762.

    Article  CAS  PubMed  Google Scholar 

  46. Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O’Bar A et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 2010; 116: 1685–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fehres CM, Kalay H, Bruijns SCM, Musaafir SAM, Ambrosini M, van Bloois L et al. Cross-presentation through langerin and DC-SIGN targeting requires different formulations of glycan-modified antigens. J Control Release 2015; 203: 67–76.

    Article  CAS  PubMed  Google Scholar 

  48. Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS . Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 2012; 36: 873–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Romani N, Brunner PM, Stingl G . Changing views of the role of Langerhans cells. J Invest Dermatol 2012; 132: 872–881.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the personnel of the Bergman clinic in Bilthoven, the Netherlands for providing healthy donor skin. We would like to thank Tom O’Toole for the technical assistance with imaging flow cytometry. The present work was funded by KWF (VU2009-2598), the Dutch Science Foundation (NWO, VENI Grant NO 863.10.017), the European Research Council (ERCAdvanced339977), and NanoNext 3D01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvette van Kooyk.

Additional information

Supplementary information of this article can be found on the Cellular & Molecular Immunology’s website (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehres, C., Duinkerken, S., Bruijns, S. et al. Langerin-mediated internalization of a modified peptide routes antigens to early endosomes and enhances cross-presentation by human Langerhans cells. Cell Mol Immunol 14, 360–370 (2017). https://doi.org/10.1038/cmi.2015.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.87

  • Springer Nature Limited

Keywords

This article is cited by

Navigation