Skip to main content

Advertisement

Log in

IL-15 temporally reorients IL-10 biased B-1a cells toward IL-12 expression

  • Research Article
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

Interleukin (IL)-15 is known to strongly modulate T-cell function; however, its role in controlling mucosal immunity, including its ability to modulate B-1a cell activity, remains to be elucidated. Here, we show that IL-15 upregulates activation molecules and the costimulatory molecule CD80 on viable B-1a cells. Cell activation was accompanied by the depletion of sialic acid-binding immunoglobulin-like lectin (Siglec)-G, an inhibitor of cell activation that is present on B-1a cells. The IL-15 receptor CD122 was stimulated on B-1a cells by the cytokine showing its direct involvement in IL-15-mediated responses. IL-10 is responsible for the long term survival of B-1a cells in culture, which is initially promoted by IL-15. The upregulation of IL-10 was followed by the appearance of suppressor of cytokine signaling (SOCS)1 in the presence of IL-15 and the loss of IL-10. This resulted in the cells switching to IL-12 expression. This anti-inflammatory to pro-inflammatory shift in the B-1a cell character was independent of the cell-specific marker CD5, which remained highly expressed throughout the in vitro life of the cells. The presence of the immunosuppressive receptor programmed cell death (PD)-1 and its ligand PD-L2 were features of a predominantly IL-10 response. PD-1 and PD-L2 can mediate juxtacrine signaling. However, the abrogation of PD-1 and its ligand was observed when the cells expressed IL-12. This demonstrates an inverse relationship between the receptor and ligand and the pro-inflammatory cytokine. The induction of IgM and IgA, which can play pivotal roles in mucosal immunity, was promoted in the presence of IL-15. Collectively, the data implicate IL-15 as the master cytokine that induces B-1a cells to mount a mucosal immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hiroi T, Yanagita M, Iijima H, Iwatani K, Yoshida T, Takatsu K et al. Deficiency of IL-5 receptor a-chain selectively influences the development of the common mucosal immune system-independent IgA-producing B-1 cell in mucosa-associated tissues. J Immunol 1999; 162: 821.

    CAS  PubMed  Google Scholar 

  2. Gardby E, Lane P, Lycke NY . Requirements for B7-CD28 costimulation in mucosal IgA responses: paradoxes observed in CTLA4-H gamma 1 transgenic mice. J Immunol 1998; 161: 49.

    CAS  PubMed  Google Scholar 

  3. Fagarasan S, Honjo T . T-Independent immune response: new aspects of B cell biology. Science 2000; 290: 89.

    Article  CAS  PubMed  Google Scholar 

  4. Berland R, Wortis HH . Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 2002; 20: 253.

    Article  CAS  PubMed  Google Scholar 

  5. Montecino-Rodriguez E, Leathers H, Dorshkind K . Identification of a B-1 B cell-specified progenitor. Nat Immunol 2006; 7: 293.

    Article  CAS  PubMed  Google Scholar 

  6. Ehrenstein MR, Notley CA . The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 2010; 10: 778.

    Article  CAS  PubMed  Google Scholar 

  7. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM . A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288: 2222.

    Article  CAS  PubMed  Google Scholar 

  8. Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA . Many of the IgA producing plasma cells in murine gut are derived from self replenishing precursors in the peritoneal cavity. Int Immunol 1989; 1: 75.

    Article  CAS  PubMed  Google Scholar 

  9. Kroese FG, Butcher EC, Stall AM, Herzenberg LA . A major peritoneal reservoir of precursors for intestinal IgA plasma cells. Immunol Invest 1989; 18: 47.

    Article  CAS  PubMed  Google Scholar 

  10. Waldmann TA, Dubois S, Tagaya Y . Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14: 105.

    CAS  PubMed  Google Scholar 

  11. Dubois S, Mariner J, Waldmann TA, Tagaya Y . IL-15R alpha recycles and presents IL-15 in trans to neighboring cells. Immunity 2002; 17: 537.

    Article  CAS  PubMed  Google Scholar 

  12. Carson WE, Fehniger TA, Haldar S, Eckhert K, Lindemann MJ, Lai CF et al. A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 1997; 99: 937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waldmann TA, Tagaya Y . The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 1999; 17: 19.

    Article  CAS  PubMed  Google Scholar 

  14. Budagian V, Bulanova E, Paus R, Bulfone-Paus S . IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev 2006; 17: 259.

    Article  CAS  PubMed  Google Scholar 

  15. Reinecker HC, MacDermott RP, Mirau S, Dignass A, Podolsky DK . Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 1996; 111: 1706.

    Article  CAS  PubMed  Google Scholar 

  16. Hirose K, Suzuki H, Nishimura H, Mitani A, Washizu J, Matsuguchi T et al. Interleukin-15 may be responsible for early activation of intestinal intraepithelial lymphocytes after oral infection with Listeria monocytogenes in rats. Infect Immun 1998; 66: 5677.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohteki T, Yoshida H, Matsuyama T, Duncan GS, Mak TW, Ohashi PS . The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 1998; 187: 967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamada K, Kimura Y, Nishimura H, Namii Y, Murase M, Yoshikai Y . Characterization of CD4+CD8αα+ and CD4CD8αα+ intestinal intraepithelial lymphocytes in rats. Int Immunol 1999; 11: 21.

    Article  CAS  PubMed  Google Scholar 

  19. van Heel DA . Interleukin 15: its role in intestinal inflammation. Gut 2006; 55: 444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH . IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol 1995; 154: 483.

    CAS  PubMed  Google Scholar 

  21. Hiroi T, Yanagita M, Ohta N, Sakaue G, Kiyono H . IL-15 and IL-15 receptor selectively regulate differentiation of common mucosal immune system-independent B-1 cells for IgA responses. J Immunol 2000; 165: 4329.

    Article  CAS  PubMed  Google Scholar 

  22. Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol 2003; 170: 711.

    Article  CAS  PubMed  Google Scholar 

  23. Pillai S, Netravali IA, Cariappa A, Mattoo H . Siglecs and immune regulation. Annu Rev Immunol 2012; 30: 357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH . Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 2002; 100: 4537.

    Article  CAS  PubMed  Google Scholar 

  25. Whyte CS, Bishop ET, Rückerl D, Gaspar-Pereira S, Barker RN, Allen JE et al. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J Leukoc Biol 2011; 90: 845.

    Article  CAS  PubMed  Google Scholar 

  26. Riella LV, Paterson AM, Sharpe AH, Chandraker A . Role of the PD-1 pathway in the immune response. Am J Transplant 2012; 12: 2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park CS, Yoon SO, Armitage RJ, Choi YS . Follicular dendritic cells produce IL-15 that enhances germinal center B cell proliferation in membrane-bound form. J Immunol 2004; 173: 6676.

    Article  CAS  PubMed  Google Scholar 

  28. Demirci G, Li XC . IL-2 and IL-15 exhibit opposing effects on Fas mediated apoptosis. Cell Mol Immunol 2004; 1: 123.

    CAS  PubMed  Google Scholar 

  29. Steel JC, Ramlogan CA, Yu P, Sakai Y, Forni G, Waldmann TA et al. Interleukin-15 and its receptor augment dendritic cell vaccination against the neu oncogene through the induction of antibodies partially independent of CD4 help. Cancer Res 2010; 70: 1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Sabatino A, Calarota SA, Vidali F, MacDonald TT, Corazza GR . Role of IL-15 in immune-mediated and infectious diseases. Cytokine Growth Factor Rev 2011; 22: 19.

    Article  CAS  PubMed  Google Scholar 

  31. Gill N, Paltser G, Ashkar AA . Interleukin-15 expression affects homeostasis and function of B cells through NK cell-derived interferon-γ. Cell Immunol 2009; 258: 59.

    Article  CAS  PubMed  Google Scholar 

  32. Jellusova J, Düber S, Gückel E, Binder CJ, Weiss S, Voll R et al. Siglec-G regulates B1 cell survival and selection. J Immunol 2010; 185: 3277.

    Article  CAS  PubMed  Google Scholar 

  33. Ding C, Liu Y, Wang Y, Park BK, Wang CY, Zheng P et al. Siglecg limits the size of B1a B cell lineage by down-regulating NFkappaB activation. PLoS One 2007; 2: e997.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Davey GM, Starr R, Cornish AL, Burghardt JT, Alexander WS, Carbone FR et al. SOCS-1 regulates IL-15-driven homeostatic proliferation of antigen-naive CD8 T cells, limiting their autoimmune potential. J Exp Med 2005; 202: 1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ilangumaran S, Ramanathan S, La Rose J, Poussier P, Rottapel R . Suppressor of cytokine signaling 1 regulates IL-15 receptor signaling in CD8+CD44high memory T lymphocytes. J Immunol 2003; 171: 2435.

    Article  CAS  PubMed  Google Scholar 

  36. Nishimura H, Nose M, Hiai H, Minato N, Honjo T . Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141.

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001; 291: 319.

    Article  CAS  PubMed  Google Scholar 

  38. Nishimura H, Minato N, Nakano T, Honjo T . Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol 1998; 10: 1563.

    Article  CAS  PubMed  Google Scholar 

  39. Zhong X, Tumang J, Gao W, Bai C, Rothstein T . PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for VH11/VH12 and phosphatidylcholine binding. Eur J Immunol 2007; 37: 2405.

    Article  CAS  PubMed  Google Scholar 

  40. Yu P, Steel JC, Zhang M, Morris JC, Waldmann TA . Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res 2010; 16: 6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cole LE, Yang Y, Elkins KL, Fernandez ET, Qureshi N, Shlomchik MJ et al. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc Natl Acad Sci USA 2009; 106: 4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rothstein TL, Griffin DO, Holodick NE, Quach TD, Kaku H . Human B-1 cells take the stage. Ann NY Acad Sci 2013; 1285: 97.

    Article  CAS  PubMed  Google Scholar 

  43. Pagliari D, Cianci R, Frosali S, Landolfi R, Cammarota G, Newton EE et al. The role of IL-15 in gastrointestinal diseases: a bridge between innate and adaptive immune response. Cytokine Growth Factor Rev 2013; 24: 455.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Council of Medical Research (intramural project number IM/TB/12-13/6), the Government of India, New Delhi-110 029, India. AKG and DS are recipients of Senior Research Fellowships from the University Grants Commission (F. No. 2-77/98 (SA-I)), New Delhi-110 002. SM is the recipient of a Senior Research Fellowship from the Council of Scientific and Industrial Research (National Eligibility Test Fellowship No. 09/482(0049)/2009-EMR-I), New Delhi-110 012. RB is the recipient of a Research Scientist position of the project BT/PR8480/MED/29/729/2013 from the Department of Biotechnology, New Delhi 110 003, India.

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanti Ghosh, A., Sinha, D., Mukherjee, S. et al. IL-15 temporally reorients IL-10 biased B-1a cells toward IL-12 expression. Cell Mol Immunol 13, 229–239 (2016). https://doi.org/10.1038/cmi.2015.08

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2015.08

  • Springer Nature Limited

Keywords

Navigation