Skip to main content

Advertisement

Log in

IL-15/sIL-15Rα gene transfer suppresses Lewis lung cancer growth in the lungs, liver and kidneys

  • Original Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstract

Nearly 40% of people with lung cancer have tumor growth in other organs at the time of diagnosis. Current treatment strategies for patients with late-stage lung cancer are primarily palliative and only showed modest efficacy. The current study takes advantage of the hydrodynamic gene delivery technique to evaluate the antitumor activity of interleukin (IL)-15/sIL-15Rα on lung tumors growing in the lungs, liver and kidneys. We demonstrate that hydrodynamic tail vein injection of 2 μg of AG209 DP muIL-15sRα+IL-15 plasmid resulted in serum IL-15/sIL-15Rα reaching a peak level of ~10 μg ml−1 1 day after the injection and gradually declined to ~5 ng ml−1 within 3 days. Quantitative PCR analysis revealed that overexpression of IL-15/sIL-15Rα induced the activation of natural killer and T cells, evidenced by increased mRNA levels of marker genes including granzyme B, perforin, Ifn-γ, T-bet and Cd8 in the lungs, liver and kidneys. Importantly, transfer of the Il-15/sIl-15Rα gene alone, or in combination with gemcitabine chemotherapy, significantly inhibited the tumor growth in these three organs and prolonged median survival time of treated mice by 1.7- and 3.3-fold, respectively. The therapeutic benefits are principally blockade and elimination of tumor growth in the liver and kidneys. Taken together, these results suggest that IL-15/sIL-15Rα-based gene therapy could be an effective approach to treat late-stage lung cancer with metastases in other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics. 2015 CA Cancer J Clin 2015; 65: 5–29.

    Article  Google Scholar 

  2. Little AG, Gay EG, Gaspar LE, Stewart AK . National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer 2007; 57: 253–260.

    Article  Google Scholar 

  3. Azzoli CG, Baker S Jr, Temin S, Pao W, Aliff T, Brahmer J et al. American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol 2009; 27: 6251–6266.

    Article  CAS  Google Scholar 

  4. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y . Cytokines in cancer immunity and immunotherapy. Immunol Rev 2004; 202: 275–293.

    Article  CAS  Google Scholar 

  5. Dutcher J . Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park) 2002; 16: 4–10.

    Google Scholar 

  6. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH . Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: The Eastern Cooperative Oncology Group trial EST 1684. J Clin Oncol 1996; 14: 7–17.

    Article  CAS  Google Scholar 

  7. Waldmann TA . The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6: 595–601.

    Article  CAS  Google Scholar 

  8. Steel JC, Waldmann TA, Morris JC . Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012; 33: 35–41.

    Article  CAS  Google Scholar 

  9. Dubois S, Mariner J, Waldmann TA, Tagaya Y . IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 2002; 17: 537–547.

    Article  CAS  Google Scholar 

  10. Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C et al. Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 2008; 283: 4189–4199.

    Article  CAS  Google Scholar 

  11. Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD et al. Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci USA 2006; 103: 9166–9171.

    Article  CAS  Google Scholar 

  12. Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR . Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol 2008; 180: 2099–2106.

    Article  CAS  Google Scholar 

  13. Steel JC, Ramlogan CA, Yu P, Sakai Y, Forni G, Waldmann TA et al. Interleukin-15 and its receptor augment dendritic cell vaccination against the neu oncogene through the induction of antibodies partially independent of CD4 help. Cancer Res 2010; 70: 1072–1081.

    Article  CAS  Google Scholar 

  14. Cheng L, Du X, Wang Z, Ju J, Jia M, Huang Q et al. Hyper-IL-15 suppresses metastatic and autochthonous liver cancer by promoting tumour-specific CD8+ T cell responses. J Hepatol 2014; 61: 1297–1303.

    Article  CAS  Google Scholar 

  15. Chang CM, Lo CH, Shih YM, Chen Y, Wu PY, Tsuneyama K et al. Treatment of hepatocellular carcinoma with adeno-associated virus encoding interleukin-15 superagonist. Hum Gene Ther 2010; 21: 611–621.

    Article  CAS  Google Scholar 

  16. Bessard A, Sole V, Bouchaud G, Quemener A, Jacques Y . High antitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor alpha fusion protein, in metastatic melanoma and colorectal cancer. Mol Cancer Ther 2009; 8: 2736–2745.

    Article  CAS  Google Scholar 

  17. Epardaud M, Elpek KG, Rubinstein MP, Yonekura AR, Bellemare-Pelletier A, Bronson R et al. Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 2008; 68: 2972–2983.

    Article  CAS  Google Scholar 

  18. Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR . Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8(+)/CD44(high) T cells and its antitumor action. J Immunol 2008; 180: 2099–2106.

    Article  CAS  Google Scholar 

  19. Stoklasek TA, Schluns KS, Lefrancois L . Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol 2006; 177: 6072–6080.

    Article  CAS  Google Scholar 

  20. Jalah R, Rosati M, Kulkarni V, Patel V, Bergamaschi C, Valentin et al. Efficient systemic expression of bioactive IL-15 in mice upon delivery of optimized DNA expression plasmids. DNA Cell Biol 2007; 26: 827–840.

    Article  CAS  Google Scholar 

  21. Rosati M, von Gegerfelt A, Roth P, Alicea C, Valentin A, Robert-Guroff M et al. DNA vaccines expressing different forms of simian immunodeficiency virus antigens decrease viremia upon SIVmac251 challenge. J Virol 2005; 79: 8480–8492.

    Article  CAS  Google Scholar 

  22. Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN . Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 1997; 71: 4892–4903.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6: 1258–1266.

    Article  CAS  Google Scholar 

  24. Li J, Yao Q, Liu D . Hydrodynamic cell delivery for simultaneous establishment of tumor growth in mouse lung, liver and kidney. Cancer Biol Ther 2011; 12: 737–741.

    Article  Google Scholar 

  25. Chapoval AI, Fuller JA, Kremlev SG, Kamdar SJ, Evans R . Combination chemotherapy and IL-15 administration induce permanent tumor regression in a mouse lung tumor model: NK and T cell-mediated effects antagonized by B cells. J Immunol 1998; 161: 6977–6984.

    CAS  PubMed  Google Scholar 

  26. Johnson DH . Gemcitabine for the treatment of non-small-cell lung cancer. Oncology (Williston Park) 2001; 15: 33–39.

    CAS  Google Scholar 

  27. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM . Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11: 6713–6721.

    Article  CAS  Google Scholar 

  28. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  Google Scholar 

  29. Yang JC, Sherry RM, Steinberg SM, Topalian SL, Schwartzentruber DJ, Hwu P et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 2003; 21: 3127–3132.

    Article  CAS  Google Scholar 

  30. Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  Google Scholar 

  31. Aerts JG, Hegmans JP . Tumor-specific cytotoxic T cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer. Cancer Res 2013; 73: 2381–2388.

    Article  CAS  Google Scholar 

  32. Ikeda R, Vermeulen LC, Lau E, Jiang ZS, Sachidanandam K, Yamada K et al. Isolation and characterization of gemcitabine-resistant human non-small cell lung cancer A549 cells. Int J Oncol 2011; 38: 513–519.

    CAS  PubMed  Google Scholar 

  33. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WEE, Poddubskaya E et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373: 123–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Barbara K Felber (NCI) for generously providing us with the AG209 DP muIL-15sRα+IL-15 plasmids, and Mrs Francisca Burnley for proofreading the manuscript. The study was supported in part by a grant from NIH (RO1HL098295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Liu, D. IL-15/sIL-15Rα gene transfer suppresses Lewis lung cancer growth in the lungs, liver and kidneys. Cancer Gene Ther 23, 54–60 (2016). https://doi.org/10.1038/cgt.2015.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.67

  • Springer Nature America, Inc.

Navigation