Skip to main content
Log in

Current Status and Future Prospects of Transdermal Drug Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. S. S. Davis. Delivery systems for biopharmaceuticals. J. Pharm. Pharmacol. 44 (suppl. 1):186–190 (1992).

    Google Scholar 

  2. G. W. Cleary. Transdermal delivery systems: A medical rationale. In V. P. Shah and H. I. Maibach (ed.), Topical Drug Bioavailability, Bioequivalence, and Penetration, Plenum Press, New York, 1993, 17–68.

    Google Scholar 

  3. R. H. Guy and J. Hadgraft (ed.). Transdermal Drug Delivery: Developmental Issues and Research Initiatives, Marcel Dekker, New York, 1989.

    Google Scholar 

  4. V. P. Shah, T. M. Ludden, S. V. Dighe, J. P. Skelly, and R. L. Williams. Bioavailability and bioequivalence of transdermal drug delivery systems—Regulatory considerations. In V. P. Shah and H. I. Maibach (ed.), Topical Drug Bioavailability, Bioequivalence, and Penetration, Plenum Press, New York, 1993, 415–424.

    Google Scholar 

  5. G. L. Flynn. Physiocochemical determinants of skin absorption. In T. R. Gerrity and C. J. Henry (ed.), Principles of Route-to-Route Extrapolation for Risk Assessment, Elsevier, New York, 1990, 98–127.

    Google Scholar 

  6. R. O. Potts and M. L. Francoeur. Lipid biophysics of water loss through the skin. Proc. Natl. Acad. Sci. USA 87:3871–3873 (1990).

    Google Scholar 

  7. R. O. Potts and M. L. Francoeur. The influence of stratum corneum morphology on water permeability. J. Invest. Dermatol. 96:495–499 (1991).

    Google Scholar 

  8. P. M. Elias and G. K. Menon. Structural and lipid correlates of the epidermal permeability barrier. Advances in Lipid Research 24:1–26 (1991).

    Google Scholar 

  9. E. W. Smith and H. I. Maibach (ed.). Percutaneous Penetration Enhancers, CRC Press, Boca Raton, 1995.

    Google Scholar 

  10. K. A. Walters and J. Hadgraft (ed.). Pharmaceutical Skin Penetration Enhancement, Marcel Dekker, New York, 1993.

    Google Scholar 

  11. A. Kock, T. Schwartz, R. Kirnbauer, A. Urbanski, P. Perry, J. C. Ansel, and T. Luger. Human keratinocytes are a source for tumour necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J. Exp. Med. 172:1609–1614 (1990).

    Google Scholar 

  12. B. J. Nickoloff and Y. Naidu. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J. Amer. Acad. Dermatol. 30:535–546 (1994).

    Google Scholar 

  13. J.-C. Tsai, K. R. Feingold, D. Crumrine, L. C. Wood, C. Grunfeld, and P. M. Elias. Permeability barrier disruption alters the localization and expression of TNF-α protein in the epidermis. Arch. Dermatol. Res. 286:242–248 (1994).

    Google Scholar 

  14. G. Menon, K. R. Feingold, and P. M. Elias. Lamellar body secretory response to barrier disruption. J. Invest. Dermatol. 98:279–289 (1992).

    Google Scholar 

  15. L. C. Wood, P. M. Elias, C. Calhoun, J.-C. Tsai, C. Grunfeld, and K. R. Feingold. Barrier disruption stimulates interleukin-1a expression and release from a preformed pool in murine epidermis. J. Invest. Dermatol. 106:397–403 (1996).

    Google Scholar 

  16. V. H. W. Mak. Presentation at “Cytokines in Dermatology” Symposium, San Francisco, CA, 1995.

  17. J.-C. Tsai, R. H. Guy, C. R. Thornfeldt, K. R. Feingold, and P. M. Elias. Metabolic approaches to enhance transdermal drug delivery. I. Effect of lipid synthesis inhibitors. J. Pharm. Sci. in press: (1996).

  18. S. M. Short, W. Rubas, B. D. Paasch, and R. J. Mrsny. Transport of biologically active interferon-gamma across human skin in vitro. Pharm. Res. 12:1140–1145 (1995).

    Google Scholar 

  19. S. M. Niemiec, C. Ramachandran, and N. Weiner. Influence of nonionic liposomal composition on topical delivery of peptide drugs into pilosebaceous units: an in vivo study using the hamster ear model. Pharm. Res. 12:1184–1188 (1995).

    Google Scholar 

  20. B. H. Sage. Iontophoresis. In E. W. Smith and H. I. Maibach (ed.), Percutaneous Penetration Enhancers, CRC Press, Boca Raton, 1995, 351–368.

    Google Scholar 

  21. Theme Issue: Iontophoresis. Advanced Drug Delivery Reviews 9:119–307 (1992).

  22. B. H. Sage and J. E. Riviere. Model systems in iontophoresis—transport efficacy. Advanced Drug Delivery Reviews 9:265–287 (1992).

    Google Scholar 

  23. P. W. Ledger. Skin biological issues in electrically enhanced transdermal delivery. Advanced Drug Delivery Reviews 9:289–307 (1992).

    Google Scholar 

  24. B. H. Sage. Insulin iontophoresis. In L. M. Sanders and W. Hendron (ed.), Protein Delivery—Physical Systems, Plenum Press, New York, 1996, in press.

    Google Scholar 

  25. L. Langkjaer, J. Brange, G. M. Grodsky, and R. H. Guy. Transdermal delivery of monomeric insulin analogues by iontophoresis. Proceed. Int. Symp. Control. Rel. Bioact. Mater. 21:172–173 (1994).

    Google Scholar 

  26. M. R. Prausnitz, V. G. Bose, R. Langer, and J. C. Weaver. Electroporation. In E. W. Smith and H. I. Maibach (ed.), Percutaneous Penetration Enhancers, CRC Press, Boca Raton, 1995, 393–405.

    Google Scholar 

  27. J. E. Riviere, N. A. Monteiro-Riviere, R. A. Rogers, D. Bommannan, J. A. Tamada, and R. O. Potts. Pulsatile transdermal delivery of LHRH using electroporation: drug delivery and skin toxicology. J. Control. Rel. 36:229–233 (1995).

    Google Scholar 

  28. J. Kost and R. Langer. Ultrasound-mediated drug delivery. In V. P. Shah and H. I. Maibach (ed.), Topical Drug Bioavailability, Bioequivalence, and Penetration, Plenum Press, New York, 1993, 91–104.

    Google Scholar 

  29. K. Tachibana. Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure. Pharm. Res. 9:952–954 (1992).

    Google Scholar 

  30. S. Mitragotri, D. Blankschtein, and R. Langer. Ultrasound-mediated transdermal protein delivery. Science 269:850–853 (1995).

    Google Scholar 

  31. R. H. Guy. A sweeter life for diabetics? Nature Med. 1:1132–1133 (1995).

    Google Scholar 

  32. G. Rao, P. Glikfeld, and R. H. Guy. Reverse iontophoresis: development of a noninvasive approach for glucose monitoring. Pharm. Res. 10:1751–1755 (1993).

    Google Scholar 

  33. G. Rao, R. H. Guy, P. Glikfeld, W. R. LaCourse, L. Leung, J. Tamada, R. O. Potts, and N. N. Azimi. Reverse iontophoresis: noninvasive glucose monitoring in vivo in humans. Pharm. Res. 12:1869–1873 (1995).

    Google Scholar 

  34. J. A. Tamada, N. J. V. Bohannon, and R. O. Potts. Measurement of glucose in diabetic subjects using noninvasive transdermal extraction. Nature Med. 1:1198–1201 (1995).

    Google Scholar 

  35. Punter. A person who lays bets on horses, Pocket Oxford Dictionary, Clarendon Press, Oxford, 1969, 660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guy, R.H. Current Status and Future Prospects of Transdermal Drug Delivery. Pharm Res 13, 1765–1769 (1996). https://doi.org/10.1023/A:1016060403438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016060403438

Navigation